/ f+ N$ L- g- a/ k ?- X" m
1 }2 `4 T* c0 Y& ?
( m4 t4 G% ^! E' B. y j1 n% r - Z* \: Z& H% t! ]+ e
/ X( l8 i/ Y# e/ A9 [
现今海洋面积占地球表面积的70.8%,达3.61×10 8km 2,约为大陆面积的2.4倍。在地质历史中海陆变迁,沧海桑田,大陆内部的岩石中留下了已消亡海洋的大量遗迹。海洋的地质作用对地壳的演变起着极为重要的作用。
( M# L" ?/ P9 @- x 第一节 海洋概况 8 v# \8 e4 E/ }( j6 j
一、海与洋 / p& Z0 _& m$ O! F/ E( L' G, Q
粗略地说,近陆者为海(sea),远陆者为洋(ocean)。一般来说,海与洋的水体是相互连通的,可视为一体。其中,因岛屿障碍而主体与大洋隔离且邻近大陆的海域称为边缘海,如日本海;对于伸入大陆内部的海域,则称为内海。
7 o4 n, A1 m" r8 O 按水深,海洋可划分为浅海区(0~200m,最深可达550m)、半深海区(200~2000m)(金性春,1987)、深海区(>2000m)三部分。
' e/ t: A& F6 L" P
# U( G6 l; W) C- O " S$ s( R5 x) w% p% |
海与洋在下列方面具有显著区别:
* U! f. {' y# p (1)洋盆是相对稳定的蓄水盆地,全球四大洋自中生代以来即已出现,尽管其范围、轮廓、深度曾发生许多变化,但一直是接受沉积的地区。海盆的形成时间较短,不论是位于陆地边缘的陆缘海(pericontinental sea, epicontinental sea),或位于大陆之间的陆间海(intercontinental sea),主要是在古近纪才初具规模,于第四纪完全形成,其位置、范围、规模变化很大。 # X' B5 C4 M6 z* \; K9 G
M& N9 o m$ R3 L6 z4 x (2)洋底地壳皆为洋壳,海底地壳除了少部分具有洋壳性质(如日本海及我国南海的一部分)外,多数为陆壳。 ( O0 \$ {; D" S; Y" w
(3)大洋水深,面积广阔,形态不受大陆轮廓的影响。海盆水浅(一般在2000m以内),范围局限,形态受陆地轮廓直接影响。从我国的陆缘海和四大洋水深和面积的比较(表14-1),可以看出海与洋的某些差别。其中仅南海的水深较大,接近于大洋。这和它发展演化的程度较高有关。此外,洋与海在水的含盐度、温度及运动特征等方面还有一定的不同之处。 1 A7 Y( s8 C9 q% ^
8 m( Q+ T1 b# Z, ?1 ?6 s7 n: L$ m
% o- g9 ` }. ?1 R, G$ F, e# C
' t9 n: e3 } R% I 二、海水的化学成分 ! q$ L, [. C' D) k% `+ U# i
1kg海水中一般含盐33~38g,即含盐度为33‰~38‰。雨量丰富及有大河流注入的海域含盐稍低;雨量稀少、干旱炎热而又封闭孤立的海域(如红海),因蒸发量大于补给量,含盐度较高,最高达40‰以上。在开阔的大洋里,含盐度比较稳定,一般是35‰。海水中盐的成分主要是氯化物、硫酸盐、碳酸盐(表14-2)。 4 F' j6 l! S8 ^ \* g: r+ M1 r" y6 i" O: w
2 l+ u5 y( f% A) z g8 g$ e
海水中尚含Au、Ag、Ni、Co、Mo、Cu等几十种微量元素。某些元素含量较高,如金含量由0.001mg/t到60mg/t,平均约为0.04mg/t;铀含量为3.3μg/L。有许多国家在进行从海水中提取金与铀的试验,我国也开展了这方面的工作。 * ~& _: c5 y5 Y+ |" x' N* g
$ d& Z) T8 d1 Z$ @
海水中还溶解有多种气体。具有重要意义的是O2与CO2。它们来自空气及海中生物的生命活动。在阳光可以透过的浅水区域,生活在海底的植物及在海水表层漂浮生活的微体植物,通过光合作用不断制造出O2。因此在深度200m以内的海水水体中是富含O2的,并且由于海水的循环,O2还可以到达更深之处。然而,海中生活的动物不断地吸入O2,呼出CO2,会导致海水中的O2含量减少。加之,海底有机质腐烂也要消耗O2。因此,在海水垂直循环不畅的较深海底,往往是缺O2的。海水中CO2含量随海水温度升高而减少,随压力增高和盐度增大而加大,平均达到每升45cm 3CO2的含量,影响到海水的酸碱性质,控制CaCO3的沉淀。CaCO3在碱性介质中发生沉淀,在酸性介质中发生溶解。 3 O+ n' y3 q& J
三、海水的物理性质 % S( \7 c9 U, h/ T$ l
海水密度一般为1.02~1.03g/cm 3,略大于蒸馏水。随各处温度、压力及含盐度的变化而改变。
0 C3 y7 a& n! w* R+ j 海水的压力随深度的增加而增加。海水深度每增加10m,其压力增加1.013×10 5Pa。水深1000m处的压力为1.013×10 7Pa,可以使木材的体积压缩1/2而下沉。水深7600m处的压力可以使空气获得水一样的密度。
# C( @. P' j d* p. s * f3 ]- U, ~( j* V! k& q; v
海水的颜色通常为蓝色。但是在近大陆的海域中,海水的颜色会受到海水中的生物以及泥砂含量等因素影响而改变。如红海海水具有浑红色调,系因海水富含红色藻类。我国渤海、黄海的海水多呈黄色,原因是其含有大量泥沙。 ' v- U( I! E* o! Y$ ?
海水温度各处不同。海水表层温度在赤道附近是25~28℃,最高达35℃。在南、北纬50°附近是10℃左右。在南、北纬80°以上的极地,则为0℃以下。此外,海水温度随着海水深度增加而降低,但表层海水中热的传导仅限于一定深度(200~300m)以内,300m以下海水温度变化很小。洋底水温一般在2~3℃之间。 & {1 u5 G5 y/ A9 X( F: p1 @
四、海水中的生物 7 N% r: h- N* Q! G
(1)底栖生物(benthos):固定在海底生活的生物,如珊瑚(coral)、腕足类(brachiopoda)、苔藓虫(bryozoan)等。主要生活在1~100m水深的海底。 1 Q* v3 ^. ~ v3 M9 P
_* P- s" D8 }( U$ M5 V
(2)游泳生物(nekton):在海水中能主动游泳的生物,主要为鱼类。
- K- L" [3 u; j
( v4 F" v$ c/ O (3)浮游生物(plankton):随水漂移的生物,如飘浮的藻类(algae)、有孔虫(foraminifera)、放射虫等。游泳和浮游生物主要生活在海水上层50~100m的深度范围。 6 s% v2 \' X& I
( Y1 M; A! B! ]8 I$ Q$ b
绝大部分底栖生物、游泳生物及部分浮游生物的骨骼(介壳)成分是CaCO3,而硅藻(diatom)、放射虫(radiolarian)及硅质海绵(siliceous sponge)等生物的骨骼成分为SiO2。 & B3 b" S* W- K. b5 s3 J
上述三类生物,在地质历史时期曾经广泛发育,其化石被大量保存在沉积岩中。
/ i9 T2 S& p9 u* @6 P 海水及海底沉积物中还生活着细菌(bacteria)。细菌具有极大的繁殖能力。1mL的海水中细菌可达50万个以上,1mL的海底沉积物中细菌有数千万到数亿个。大多数细菌能分解有机质,制造还原环境。
. z7 ~1 s7 z6 g+ f3 ?" G; K. z 上述海水生物对于沉积物的形成、有机质的堆积以及某些矿产的形成均有重要意义。因为,一方面,生物的骨骼或有机体是海中沉积物质的一种来源;另一方面,海中生物的生命活动对海中各种沉积作用的进程起着制约作用(袁家义等,1978)。
( s+ r) H: W8 P! B' t 注:天天学普地栏目的内容摘录自舒良树版《普通地质学》
$ n7 B) D P9 v; w; Y$ r 美编:鲁方圆 : D( \1 c5 Z0 P( H/ B+ `. e
校对:陶 琴 2 T' y. S- p! }% e
: Y0 g3 y! m* z# y8 J
4 m" s! d8 N$ k
/ J1 J/ M9 Y9 @; H# Y+ p% {" a: Y) G: F: Q. [4 w c. B
' [1 m/ w: h4 M) n* C7 x
|