J' H" ?' B }! i( Z+ ^
本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可
4 f4 f B0 {- d8 w0 M 动量方程E1-E3
3 S ]% J* V" e* d% C/ B1 } E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x * N6 S$ D$ G0 {4 ~( L
E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y
5 n+ {7 a& e& K- o! c8 P# A E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z
# g. A6 x8 c" J. ]5 W1 V 上述三个方程分别是动量方程的x、y、z分量形式 % [7 |5 P) p6 i6 F: N5 l9 B, V
也可以写成矢量形式:
R6 f9 A; ?1 C& ~; V, \# F s dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r $ ^+ N" y. G. {
以下我将逐个解释各项含义
/ n) _7 i1 F! E, Q. e 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数
3 q0 q5 U% ~, g) \, d, ? j8 k 等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力 ! i% A" F0 ]+ s* X' D- Q% p
重力不用过多分析,仅存在于z方向 4 l( Y$ s/ ~2 j0 S2 ?# F
压强梯度力:x方向为例,
) `1 @0 e" K; A- E* [ a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x
- ?* Z0 m9 H+ C# z 科氏力: F=−2Ω×VF=-2\Omega\times V
& u/ a& E4 [' y, Q* X& a! ` Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s * n/ f, Y0 t, P6 s% X8 D
Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi) 1 ~# U- C0 d) C
φ=latitude\varphi=latitude 3 ~! N2 d0 D4 z4 k! G( X6 M
近似计算 8 p& `; J$ m, c3 S
Fx=fvF_x=fv
0 [; d. T3 k( l- }: f S Fy=−fuF_y=-fu 2 h4 n0 n9 \& n
ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
* A$ Q r/ r6 K* L/ ? 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) 1 S% l* e0 d) P, _+ U& x
E4 连续性方程 8 \9 A. v# c$ r S: ]( p; P
∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0
" V0 X6 y+ v: y D& E Eularian观点:定点处观察经过的流体质量变化 9 S3 M2 Z% b; }0 F
∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0 8 s; S% t! @/ b; V1 G* y
转化为Lagrange观点:跟踪流体微团 / i' X0 |( e- d2 Q! r" {6 K
1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0 % a: E j& b! f
E5-E6盐守恒、热守恒 4 F; Q0 `+ m. `3 T" x% T' P. C
E7 状态方程 1 m0 y+ @% Q2 a/ L
∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z ) y$ G% D' X' A! u- Y& J
# C: ?0 l7 A3 w
( n/ ] j, Z* O/ I8 A. k5 f8 P" V9 T9 b9 e: Q
9 q! ~+ P4 J# ~9 H! L
|