: P3 H/ U; I# s5 x7 ~4 H 本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可 - k7 g9 G% |1 ]" n2 N2 _* s
动量方程E1-E3
& D( ?" Y. ]& ?0 R" v9 X2 ?! r E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x 6 W+ y# w; b0 E
E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y : V( J* e3 V1 k* E; ]
E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z
: \( ?. t/ T& m; g* K5 S4 S 上述三个方程分别是动量方程的x、y、z分量形式
5 W) |' w: f9 K: O$ B# t, W ` 也可以写成矢量形式: 5 r, X/ S% @! @, J& k1 W
dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r - I9 z! o$ b+ n9 T4 V0 _* [( O
以下我将逐个解释各项含义
3 D1 D6 D5 A4 Y9 | 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数 ' T5 w( k5 Y) k- s1 K- T+ u$ y) i
等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力 3 H a3 n0 d3 @" J5 a9 b# ?( J
重力不用过多分析,仅存在于z方向
' t4 o, w+ H0 R$ L7 ?' x( G 压强梯度力:x方向为例, ( @9 c7 V6 h5 ]! w- h( O- Q- z
a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x ; N6 Q4 ~8 U2 v; k' o0 Y: s
科氏力: F=−2Ω×VF=-2\Omega\times V : L$ d+ z p" [* \: M, ]
Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s - j5 T& I1 Y6 W9 ~$ i- N' K
Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi) ( o1 r8 S S0 |+ E5 W* H! x s
φ=latitude\varphi=latitude ' p$ E8 f! M8 G
近似计算 % C$ o$ @. J9 v8 d% N3 f
Fx=fvF_x=fv
2 p# i7 G) a g: ^* n# \ Fy=−fuF_y=-fu
8 V$ B' S- w6 r# ^ ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
- [0 w* [9 J4 I T" Q& ?3 I2 H! S 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍)
9 H! A2 T! f x1 [# }" E* u7 C E4 连续性方程
$ y9 x: l/ Z8 x& ? ∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0
- d+ _: @0 R7 `% f Eularian观点:定点处观察经过的流体质量变化
* s- p: u* V# E0 E% |: {* w ∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0 / A/ Z' H8 g* o7 A2 x
转化为Lagrange观点:跟踪流体微团
; r) j6 J( P& w! W( U 1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0
6 N, q+ z1 H0 x2 N E5-E6盐守恒、热守恒
j9 y4 z2 P& _$ R0 @ E7 状态方程 ' V7 C! g& l" U- w) s/ E' f
∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z
, h, f7 J5 \9 v0 W4 A2 K1 K! P" y& [$ o: T/ q8 C
0 o. F5 \. G9 k9 N3 q% Y4 D+ C; o7 I3 D. ^: v" z9 ^* e
% l) k( R4 E3 E0 T: B+ I |