2 [1 g" b9 y% {
本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可
, O& P1 Z/ x% H6 X, Z 动量方程E1-E3
" c H0 E: X0 v( K E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x
% T; Z6 ^3 _, \5 f E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y
8 C3 r U. z% A T E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z
( l6 w/ o7 [6 c 上述三个方程分别是动量方程的x、y、z分量形式 - p G* s6 x0 P3 x/ F
也可以写成矢量形式: ' @+ g) d+ ]8 f% s
dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r
( h$ b% e: U( p1 Z 以下我将逐个解释各项含义 : Z4 {; ?5 h# Q
等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数 6 b0 B! `, a; M! q! p2 e, G
等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力
( j3 n1 O% R o+ s& h0 _ 重力不用过多分析,仅存在于z方向 . ^6 y+ F n% K; Q2 e& r5 o# r
压强梯度力:x方向为例, % P% f* S1 \; `3 n8 t. f
a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x
$ ^, ^$ a) s# b8 @ 科氏力: F=−2Ω×VF=-2\Omega\times V
9 P2 j) r6 `: e2 }0 u( Y$ s Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s : k! s7 P# [- z, O( E& z
Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi) ' X+ v+ l2 G8 @* O' j7 i
φ=latitude\varphi=latitude
$ |& `& J- O! r/ K& R 近似计算 1 x* x0 O7 d/ H0 N* j9 v2 `
Fx=fvF_x=fv : ^) V- {4 ~3 ^" v0 U1 |: _
Fy=−fuF_y=-fu
4 s/ c- }& Q1 H9 i" `; q ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
. g$ V4 Y# r$ I9 I0 n 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) ( G2 W9 D# y! j. b% I
E4 连续性方程 0 a8 }( d1 }/ Y
∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0 # Y2 Z. z& _7 E N9 r1 {; G) l' J
Eularian观点:定点处观察经过的流体质量变化
" R# W5 w5 Q1 m" ?5 }6 }8 [ ∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0 , e/ ~) W" C2 A& i
转化为Lagrange观点:跟踪流体微团 ' K4 x. p/ t( j' a8 C' N# B) d
1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0
$ x+ \9 O1 ^) o; U6 i' w/ h E5-E6盐守恒、热守恒 5 {( S: O) B( f2 O4 x' O& x$ r+ D1 U
E7 状态方程
# |2 z* t; m2 {! f) J ∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z
- k9 A7 V! V/ o9 @
1 W, L( a* p* g. i. @# P ]# l9 \# q: l; ?" ^: [( }
+ q6 E+ [( X) V1 M1 u) e# p4 Q: ?; f& \# c/ L5 v: R, M
|