3 R6 N9 i- a8 S2 _, Y' g5 w' { 本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可 / f- s9 T6 P7 t! N6 [8 n
动量方程E1-E3 7 M! u5 l, E) Q) c- d
E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x
$ c6 G8 }1 R4 S E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y . r- k+ a/ z5 x( e. z V
E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z 6 g- s$ f: n: [& r) R' H& \
上述三个方程分别是动量方程的x、y、z分量形式 . ]! P+ r! Y' F8 C
也可以写成矢量形式:
- c4 k3 [) L* b' r6 M dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r 5 {9 I1 \" H( ^3 V$ x
以下我将逐个解释各项含义
' J# u( D8 f; E: n& Q( O 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数
4 R9 e; l9 H4 ]& G. `3 z# ^ 等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力 W9 {, V/ i2 e' c; \& L: a2 o
重力不用过多分析,仅存在于z方向
( S' r0 \# F& {# M P 压强梯度力:x方向为例,
w" [4 R! R+ G* a3 @6 s a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x
5 \6 \4 M% x/ }9 ]8 d1 C 科氏力: F=−2Ω×VF=-2\Omega\times V
/ u( B) b& j4 S4 Q/ Y/ l Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s
4 w& A5 n$ h' f, l+ x% f0 o0 X Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi)
% h3 ^1 z& c z& a; E b+ h φ=latitude\varphi=latitude
. H* V: u0 T0 n2 k 近似计算
" C% ^% o2 l1 F. O Fx=fvF_x=fv
* I+ [4 z8 G4 L, g Fy=−fuF_y=-fu
8 z: {$ k1 l y# _ ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
+ N) b1 m& D @$ m 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) ; B7 y6 I% Q7 ~) ?$ C, B
E4 连续性方程
! N o$ Z9 }% v7 j7 A ∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0 % `+ Q* S+ n, G- G
Eularian观点:定点处观察经过的流体质量变化 % R( P; g0 I8 H/ _; s' g
∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0 P7 f! u1 |5 \$ v( T
转化为Lagrange观点:跟踪流体微团
1 a- i( p* Y' d7 z 1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0
5 n8 l- ?6 ]8 c) n& Y E5-E6盐守恒、热守恒 : K1 t' R1 J O$ ^/ i s
E7 状态方程 ' g& d1 @2 W6 N2 k/ i
∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z
& H! J8 c/ ]7 W' w- @7 [6 ]- w/ V8 V: C0 ^, G
5 j' W% K2 x: S; s5 q1 c
3 ?( J5 X. ]+ \
0 M m6 h D3 U5 \; u) s, } |