|
# t ?+ n6 Y- f/ x5 g1 Z0 v 本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可 % C' {0 H% |7 w3 c4 D
动量方程E1-E3
7 S" k0 v( O w& I5 ~, g E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x ; a! l) f! q! j& c
E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y
6 }9 a; }) O( \' V$ l9 j; q$ z E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z
S8 Q* N7 q7 p* X% ~ 上述三个方程分别是动量方程的x、y、z分量形式 ( y: |1 P6 b4 L5 |
也可以写成矢量形式:
- v; {+ {; y2 [$ c/ V- R) r dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r " Q4 x- X6 r3 R9 k
以下我将逐个解释各项含义
- J2 {: |* E! } 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数 ) P8 [( o7 B( y4 `* {
等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力 % ~) B/ ~% h+ o/ u1 q t D: W
重力不用过多分析,仅存在于z方向 " c! q0 O$ A, k, ^
压强梯度力:x方向为例,
! g1 V1 L: k4 |" @3 z2 I a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x # I; W0 Q6 v6 w, Z+ B4 l
科氏力: F=−2Ω×VF=-2\Omega\times V ; n: S! j- `/ }3 q! ` {2 ?% S; ~
Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s 5 s9 ~: ?0 n4 l+ \5 |6 `8 e, A
Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi) , `. H. U. H; R! S: ~6 \+ ~* A, R
φ=latitude\varphi=latitude
& r0 A, p1 k% @6 L+ x$ z- P 近似计算
& q3 k! v8 ], C2 P Fx=fvF_x=fv ( F9 A- H' x) O3 s
Fy=−fuF_y=-fu
* v5 A: w9 r3 ^+ q9 T3 q- Y j ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi 7 v9 e( X# z. M* x! `& h
黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) 9 V4 f$ b1 ?. L
E4 连续性方程 1 g1 S/ `' i O r X2 D5 ~0 x8 U
∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0 # q6 x! g, C. h
Eularian观点:定点处观察经过的流体质量变化 3 U; e& g/ F5 x2 {/ E
∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0
/ Y. J/ p9 j" e; ^) Z$ i 转化为Lagrange观点:跟踪流体微团
6 [; o& {& H7 X. R1 e 1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0 ' Q W5 h, H% G7 x; B
E5-E6盐守恒、热守恒
& x& }6 V7 c+ O; q/ Q$ B E7 状态方程
0 L9 n; o/ E% r5 T4 } ∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z
7 G% V s; _4 ^9 R# ?' E6 W* G: z+ s0 L+ i O
# e# i+ N" S7 e0 ^+ k; L" q. A" ~7 v6 |
9 I% P8 N, m1 J1 n P
( `# g w8 p. g; ] G: }: W. @. n |