4 V; O- m4 N2 F1 C. s1 |图1 圆管流动中的puffs (van Doorne and Westerweel, 2009) 1 h: T* k4 n' G' H8 C
' @8 l* `$ _5 G
' Y- x( j' W3 C8 v( G. v, s9 j# {
0 C6 b9 k$ t8 y$ v) H4 m4 P1 v! X: }9 F# e0 w+ W( H
湍流是国际上科学界公认的物理和数学方面的世纪难题,从雷诺1883年做的著名的层流到湍流转捩的圆管流动实验以来,至今已经经过了140年。今天,湍流这一世纪科学难题已经得到破解了 [1-4],且理论与实验数据完全一致。为了让读者更加容易理解,今天再次简要叙述一下湍流破解的核心问题。- A' J @- B( ]: ]
" ~# ]( E1 `7 t9 u
! K- z1 O- F: X t+ N作者于2004年建立起了能量梯度理论(Energy Gradient Theory, EGT),研究层流向湍流的转捩。经过利用能量梯度理论的研究,后来发现,在所有的剪切流动中,湍流转捩都是通过在流场中形成Navier-Stokes方程的奇点而完成的。在这些奇点处,总的机械能的梯度垂直于流线,流动具有接近于零的速度,局部具有特别高的涡量,如边界层流动中的猝发及形成的湍流斑,圆管流动中的puffs(图1)等。怎么从Navier-Stokes方程及其理论上论证这些点是Navier-Stokes方程的奇点,怎么定义这类奇点,奇点的特性要同时符合数学和物理上对奇点的定义,还要让读者信服,这些成为了一大难题。在过去的20多年里,作者通过持续不断地努力,创立了一系列公理,其中一个公理架起了论证奇点的桥梁,论文于2021年发表,从此揭开了湍流的秘密。
7 Z+ {) C+ S( U1 h' u& a* _8 c$ V
1 B1 w5 M4 q; W7 _" K) [2 t% {+ s$ \* R
3 }5 Q; ?3 f0 \# h
计算流体力学(CFD)一般基于两种方法,一是连续力学方法,即Navier-Stokes方程(NS方程),具体采用的数值方法主要有有限差分方法、有限体积方法和有限元方法。二是基于粒子力学的离散方法,如SPH、DPD、LBM等方法。这两种方法的基础和出发方程都是牛顿第二定律。
. n" w8 K5 P, ^+ \; l' |' c0 A. q9 v4 i5 e( C
牛顿第二定律是物质运动的动量方程,对不可压缩流体,其沿路径积分就是机械能方程,如果是无粘流动,就是伯努利方程。
' E9 c" }: u& ^8 S) G$ j上面所提及的CFD的两种数值方法,实际上都是隐含了这样一个事实,即消耗在流体微元体或者流体粒子上的机械能与流体的速度成正比。因为流体微元体消耗的能量就等于其周围流体对其做的功,根据做功的定义和功率的定义,我们有 A=Nt=Fut。我们对比下面2个例子:
) L. ~- e, j" F+ v# v+ C( b(1)对流体质点或粒子做的功为 A=Nt=Fut,其中F为粒子所受的摩擦阻力,u为速度,N为功率,t为时间。如果对流体粒子做的功A=0(也就是流体质点消耗的机械能为零delta E=0 或者dE/dx=0),则此粒子速度u=0,如图2。
! ~6 m; t+ L3 a) A6 t; F(2)一台汽车的动力学支配方程也是,A=Nt=Fut,如果一台运行的汽车,当汽车的发动机熄火,即功率N=0,则汽车的速度立刻变为零u=0 (不考虑汽车惯性;考虑惯性也没有问题,就是需要经过很小的一段时间,u才变为零),如图2。 L, w* \0 K- y I' r
. u: W4 s' S1 O3 K) {0 d1 i图2 (a)行驶中的汽车;(b)运动中的流体质点。
6 e6 \. [& G# m) |现代力学中,上面的2个例子是自然界存在的事实,简单的道理也是显而易见的,但是科学史上不存在这样的公理或者定理。窦华书为了论证和揭示湍流的产生原理,针对不可压缩流体,创立了这样一个公理:如果消耗(作用)在流体质点上的机械能为零,则质点的速度为零。正是基于这样一个公理(书中的公理5.3 [1]),窦华书通过理论推导,发现并证明了湍流产生的物理机理(图3),这就是国际上几代科学家奋斗了140年(1883-2023),都未能找到的湍流的秘密 [1-4]。, M# n1 ~# Y$ l( P$ A8 {& U% O
上述公理实际上就是对能量守恒定律的另一种描述,首先对固体力学里的物体是适用的,然后才把这个原理用到流场中的流体质点上。只不过是,以前流体力学里从来没有对流体质点的这样的描述。如果流体力学里,以前就有这样的公理,可能湍流产生的问题早就解决了,也不会等上140年。
) k$ o0 c8 x, b$ R当大量流体质点在牛顿第二定律支配下流动时,都服从A=Nt=Fut这样的规律。当流动速度比较高时,如果在扰动作用下,流场里面突然有的流体质点,消耗的能量突然消失即N=0(在NS方程中写为dE/dx=0),则这个流体质点的运动立刻停止即u=0,这个流体质点,就成为了流场中的奇点。因为其它大量的流体质点,都是在流动,速度都不为零(边界除外),都要消耗能量,这个粒子突然速度为零,就和周围的流体粒子之间形成了间断。在非定常流动中,这个间断在扰动的一个周期内,只有一个瞬时,即发生间断的时间长度为零,但又是存在的。虽然时间极其短暂,但是为了满足Navier-Stokes方程,u=0是必须确实要发生的。这个发生间断的流体粒子(奇点)引起了速度的valley(spike产生)和压力的peak,这导致了三个速度分量及压力的涨落(脉动),以及涨落的对流,湍流就此发生了。) Y" u+ d& R: n \, [1 n6 m( z" Y
导致湍流产生的奇点指的是非定常流动中速度的间断(瞬时的u=0),而不是爆破(blowing up)。湍流中的这类奇点是窦华书首次发现的,也是窦华书首次给予定义的。在此之前,从来没有人知道湍流中存在这类奇点,窦华书从NS方程推导出了这类奇点,然后从实验数据和直接数值模拟数据得到验证,发现理论与实验完全一致。到现在为止,无论理论、实验,还是NS方程的计算,都没有人发现湍流中出现爆破(blowing up)。
' a( X, ]: X- f" H* o上述湍流发生的物理机理,是通过NS方程严格而精确地推导出来的(图3),是实验严格验证的(图4),也是DNS模拟结果验证的,互相印证,完全一致,至此,研究了200年的NS方程和研究了140年的湍流,就此露出了真面目。
2 U0 c; U6 H" U( C- s湍流的问题100多年没有解决,就是缺少上面这样一个公理。建立了这样一个公理,湍流的秘密就此揭开了,NS方程的秘密也就找到了[1-4]。如果用公式表述一下这个公理,就是,沿着流体流动的流线方向(速度矢量的方向):
: Y1 ^# P4 z2 d, M& M 当 dE/dx=0, 我们有 u=0 (theoretically)。$ ]+ }1 g7 ]# [5 ?
实际上,作者在2004和2006年的文章里,就指出了在速度剖面的拐点处,粘性项为零,此处机械能梯度垂直于流线,沿流线的速度应为零。在2008年的APS文章里,指出机械能梯度垂直于流线的位置是NS方程的奇点,并指出转捩流动通过这个奇点转捩为湍流。可是,根据什么理由来得出在拐点位置,此处u=0的结论,是一个难题,虽然心里非常明白这个结论是正确的。为了得出这个结果,作者创立了上述这个公理。公理是不需要证明的,而定理需要证明。8 s$ O4 F& Y6 `) T `
! z9 u1 X8 a7 n8 C8 h4 Q0 ^
图3 奇点(速度间断)的精确推导,假定初始的三维channel flow沿展向没有变化。方程如果写为三维的即沿展向有变化的,只要拉普拉斯算子为零(此点无能量损失),结果都一样。在扰动流动中,速度分布是畸变的,流场中存在Laplace算子瞬时为零的点。据此,得到了在非定常流动中,在Laplace算子瞬时为零的点上,pu/pt=0, pE/px=0,根据公理5.3,在此时此点,u=0。预测结果如图中右下角的picture。
# @1 } U6 S) E: U Y3 k6 k6 B) C. ~+ p/ h+ ~0 A: j9 [1 O
图4 转捩流动中奇点的实验验证(channel flow),这是层流到湍流转捩的开始阶段。上面的信号记录的为x方向的速度随时间变化。下面的信号为上游输入的扰动信号随时间的变化。可以看出,当扰动经过一个周期,速度u就发生一次间断u=0(negative spike)。而且,间断点发生在扰动的top pu/pt=0的时刻,与图3中的理论推导完全一致。实验表明,在进一步的下游,这个速度间断形成的spike, 会变为2个spikes, 三个spikes,多个spikes,再进一步地,变为湍流斑。
* G( D. y0 x* P5 L5 F( K, b! V, D
+ C- A1 }+ y( a现在解释一下图3(理论)和图4(实验)中,速度间断u=0为什么只发生在扰动的上面pu/pt=0的位置,为什么没有发生在扰动的下面pu/pt=0的位置。周期性的扰动导致速度剖面发生周期性的变化,一个周期内速度剖面在“胖”和“瘦”之间交替变化,大量实验数据证实了这种变化(如Kachanov 1994)。当扰动在top的pu/pt=0的位置时,速度的剖面是“瘦的”,有拐点,Laplace算子为零,这样根据NS方程推导,pE/px=0,导致速度发生间断u=0。当扰动在bottom的pu/pt=0的位置时,速度的剖面是“胖的”,没有拐点,Laplace算子不为零,这样根据NS方程推导,pE/px不等于0,没有发生间断。
4 N7 [3 Z6 J) N0 O$ k* L" K1 @" S- `爱因斯坦的相对论很简单,一个质能关系式E=mc^2。湍流产生的理论也非常简单,就图3一张PPT,所有理论推导就全包括了,这样的推导结果严格精确。在转捩流动中,所有拉普拉斯算子为零的点,都是NS方程的奇点(压力驱动流动),都是湍流的生成中心,即大涡产生的位置。然后,由第一级大涡的影响导致的流场,按同样的机理逐级产生小涡,最后形成完全发展的湍流。这与Kolmogorov的K41理论的概念是一致的,与分叉理论,与分形理论,都是一致的。另外,作者发现的NS方程的奇点,就是动力系统中的鞍点。需要指出的是K41理论那只是假设,而作者这是理论,通过NS方程的精确推导得出的理论。
* u% A7 k) Z3 v) x
$ Y- L+ c; l9 J* D U6 H/ f, q归根到底,层流到湍流的转捩是因为NS方程的奇点生成,湍流是由大量NS方程的奇点组成。图5中许多研究者所研究的若干湍流有关的现象或者湍流机理,其产生根源都是窦华书所发现的NS方程的奇点。如果把NS方程的奇点理解了,所有这些现象就都清楚了。, q A2 y# |6 W3 F U
过去140年来,国际上没有任何人能够通过理论,精确预测和解释湍流的产生。窦华书在国际上首次通过能量梯度理论和NS方程分析解决了这个问题,理论结果与实验数据完全一致,并且得到了湍流转捩的准则。即,湍流转捩/湍流产生的必要及充分条件是流场中出现NS方程的奇点(速度间断)[1-4]。0 O5 s0 F. q2 c1 O. j5 y9 o
9 s( L% T+ U4 w q- Z: ^3 B
4 o, E: k. f/ b/ v0 D4 P, g$ U
; e! x7 e C/ y7 [3 `: \/ ^6 S. f
图5 转捩流动及湍流中的所有现象和机理都是来源于NS方程的奇点 8 D$ n4 e1 A& b: G
作者的湍流专著[1]2022年3月底在Springer出版后,引起了读者的极大关注,12个月已经被下载了26000多次,在工程类书籍排名第一(一般的工程、力学、机械类书籍一年下载量也就1千次左右)。为了使读者理解湍流的产生机理,作者已经在科学网和知乎网及流体空间、风流之音、声振之家等微信公众号写了20多篇科普文章。为了使读者更容易理解,今天以3页PPT作为素材,再次简明扼要地讲解了NS方程是经历了怎样的变化过程导致了湍流,且理论与实验数据完全一致。
: o/ _" f% q v' B- Z/ c; T2 }, q2 D. w% Q4 ~; s
参考文献
9 f9 N" C# ^, D$ u1. Dou, H.-S., Origin of Turbulence-Energy Gradient Theory, 2022, Springer. # n/ y- \9 [, Y D5 f
www.52ocean.cn ps://10.1007/978-981-19-0087-7 (全书下载地址).+ b: W# J; f5 B7 }# V
2.窦华书教授成功破解了百年湍流难题,中国教育日报网。 , E* l# u8 c) V1 a$ _
www.52ocean.cn
" V% W3 Q8 U2 @( n 022/1117/1327.html3.窦华书教授在纳维-斯托克斯方程问题上取得新进展,浙江理工大学官网新闻。 : K! U: l! M j% X5 R/ l. p
www.52ocean.cn 或者 www.52ocean.cn # s% p* Y W4 c6 M* A, @
www.52ocean.cn033/41169.htm
. Q. T; ?6 n( ]) T! y
4 y m8 a0 w& V3 d4. 窦华书:我是怎样创立能量梯度理论的。 ) w. G5 c0 I; c. |2 T) C3 C
www.52ocean.cn 或 www.52ocean.cn
v# C$ U/ v) i Q0 I* e% j+ c9 E2 D. ~3 `4 \" D9 ]
* _4 M8 q | g3 G8 Q " x# D5 z! _ M( ?. C( r6 `
; N1 R8 V$ @/ m6 H! |
转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。 |