n6 V, w- K7 D1 P6 L3 k
# x' E ]" s/ A; U 广告 胆小者勿入!五四三二一...恐怖的躲猫猫游戏现在开始!
) W) |& s! P. ?. J4 n × . h. m" ?- U# D# I0 g
1 S* T3 Z9 f) q. F; d ( d1 p- i) }: f3 |0 L$ `* ^
当风雨敲打着风力发电机的叶片时,不列颠哥伦比亚大学奥卡纳干分校(UBC Okanagan)的研究人员在数百公里外仔细观察屏幕,分析叶片的涂层能否承受住风雨的侵袭。 2 B4 ?; K7 g: j7 C2 a! T& ^, f. [# E
虽然这只是在实验室里进行的测试,但研究人员正在努力改进涡轮机、直升机螺旋桨甚至桥梁等结构的监测方式,以防止天气造成的损坏。 5 d6 w3 E# r, ^- @
UBC奥卡纳干分校博士生Vishal Balasubramanian解释说,从航空到海洋运输,从可再生能源发电到建筑,不断变化的气候使得各行各业对更好的“侵蚀—腐蚀”监测的需求与日俱增。 & v% b' s( H$ N; J' J
在许多行业中,耐磨涂层用于保护结构免受侵蚀磨损。然而,这些涂层的使用寿命有限,会随着时间的推移而磨损。因此,需要定期检查这些涂层结构是否有磨损和破损,然后通过重新涂覆受损区域来修复。
. U" @" m2 x8 p+ N$ d Balasubramanian是UBC奥卡纳干微电子和千兆赫应用实验室(OMEGA)的研究人员之一,目前正在开发可直接嵌入涂层的传感器。这可以避免人为因素造成的误差,并大大缩短检测时间。通过将人工智能(AI)和增强现实(AR)技术集成到这些嵌入式传感器中,研究人员可以实时监测机械保护涂层的磨损情况,从而防止灾难性故障的发生。
: \* [5 b& r! O: ` 作为最近发表在《自然·通讯 》(Nature Communications)上的这项研究的主要作者,Balasubramanian解释说:“通过将人工智能技术应用到我们的微波谐振器传感器中,我们不仅能够检测到表面涂层的侵蚀,还能分辨出多层涂层中的单个涂层何时受到侵蚀。”
; P; E9 A& ]' r* R' g5 y 一些研究表明,美国每年因金属腐蚀造成的损失接近3000亿美元,超过该国国内生产总值的3%。但这不仅仅是钱的问题。 5 P+ C; g# n2 n0 z
Balasubramanian解释说,侵蚀会对桥梁、飞机、汽车和海军基础设施的外表面造成不可逆转的损害。历史上有一长串结构性故障灾难,侵蚀被认为是导致数千人丧生的结构性故障的主要原因,其中包括2018年意大利热那亚大桥垮塌、1984年印度博帕尔天然气悲剧和2000年得克萨斯州卡尔斯巴德天然气管道大火。 ! J: H6 W; g9 P0 Y
“能够主动监测和解决设备老化问题——尤其是在恶劣的环境中——无疑可以保护重要的基础设施,减少对人类生命的影响,”UBC奥卡纳干工程学院副教授、OMEGA实验室首席研究员穆罕默德·扎里菲(Mohammad Zarifi)博士说,“几年来,我们一直在开发基于微波的结冰探测传感器,而人工智能和AR等新技术的加入可以成倍提高这些传感器的效能。” 1 Z/ G5 R& m3 Y. c+ t
新开发的传感器可以检测和定位多层涂层中的侵蚀层,还可以检测保护涂层的总磨损深度。收集到这些信息后,工程师和使用者可以详细了解潜在的损害和故障危险。 + m3 Y4 w3 M+ H
在实验室中,差分网络设备接口系统在不同的温度(酷热和严寒)、不同的湿度和紫外线照射水平下进行了测试,以模拟几种恶劣的环境。在四种不同类型的实验装置中,使用不同类型的涂层对所开发的系统进行了测试,并对其响应进行了监测,这些实验装置都能实现所需的环境参数变化。 & e; {8 Y0 k2 `
Balasubramanian说:“我们在一些最恶劣的环境下测试了传感器,包括各种温度、湿度和紫外线照射。我们不断挑战这些传感器所能承受的极限,以便走在世界各地发生的灾害的前面。” 1 z8 y) B/ v) V/ D5 f
这项研究得到了加拿大国防部、加拿大自然科学和工程研究理事会以及加拿大创新基金会的资助。 ( k2 s& b( Y( {# P% O
; D6 Z- S& I. p- H$ _
/ q- o" p1 D+ Z% N
6 g" k2 r6 B/ |: A! P2 I8 X% V6 X: h4 k) J" z t
|