5 u! @1 `" x4 _! p/ h% l
; p5 t' |! \1 u 广告 胆小者勿入!五四三二一...恐怖的躲猫猫游戏现在开始!
( J5 N& Q: l/ T3 H. m ×
4 V* |. j1 r% L1 `' l- [* J4 K 5 v9 ]# X2 i' o* ^0 q% @' S
# q0 z! V/ v7 }) g& m) V& _( X2 c
当风雨敲打着风力发电机的叶片时,不列颠哥伦比亚大学奥卡纳干分校(UBC Okanagan)的研究人员在数百公里外仔细观察屏幕,分析叶片的涂层能否承受住风雨的侵袭。 0 `( D3 U7 O# ]5 ^
虽然这只是在实验室里进行的测试,但研究人员正在努力改进涡轮机、直升机螺旋桨甚至桥梁等结构的监测方式,以防止天气造成的损坏。 . X% `" S# e: V8 f( h$ e9 Q
UBC奥卡纳干分校博士生Vishal Balasubramanian解释说,从航空到海洋运输,从可再生能源发电到建筑,不断变化的气候使得各行各业对更好的“侵蚀—腐蚀”监测的需求与日俱增。 ! g, v* J) b, p2 W; g, n( I6 u
在许多行业中,耐磨涂层用于保护结构免受侵蚀磨损。然而,这些涂层的使用寿命有限,会随着时间的推移而磨损。因此,需要定期检查这些涂层结构是否有磨损和破损,然后通过重新涂覆受损区域来修复。
7 t0 ` B+ g \ } y f Balasubramanian是UBC奥卡纳干微电子和千兆赫应用实验室(OMEGA)的研究人员之一,目前正在开发可直接嵌入涂层的传感器。这可以避免人为因素造成的误差,并大大缩短检测时间。通过将人工智能(AI)和增强现实(AR)技术集成到这些嵌入式传感器中,研究人员可以实时监测机械保护涂层的磨损情况,从而防止灾难性故障的发生。
- G7 x9 X4 P1 N7 Y; x( [ 作为最近发表在《自然·通讯 》(Nature Communications)上的这项研究的主要作者,Balasubramanian解释说:“通过将人工智能技术应用到我们的微波谐振器传感器中,我们不仅能够检测到表面涂层的侵蚀,还能分辨出多层涂层中的单个涂层何时受到侵蚀。”
' y! d! i( j5 q q+ T* W 一些研究表明,美国每年因金属腐蚀造成的损失接近3000亿美元,超过该国国内生产总值的3%。但这不仅仅是钱的问题。
, e2 ?. i+ S3 @' S/ K Balasubramanian解释说,侵蚀会对桥梁、飞机、汽车和海军基础设施的外表面造成不可逆转的损害。历史上有一长串结构性故障灾难,侵蚀被认为是导致数千人丧生的结构性故障的主要原因,其中包括2018年意大利热那亚大桥垮塌、1984年印度博帕尔天然气悲剧和2000年得克萨斯州卡尔斯巴德天然气管道大火。
* W+ o# j* W- M3 c8 M “能够主动监测和解决设备老化问题——尤其是在恶劣的环境中——无疑可以保护重要的基础设施,减少对人类生命的影响,”UBC奥卡纳干工程学院副教授、OMEGA实验室首席研究员穆罕默德·扎里菲(Mohammad Zarifi)博士说,“几年来,我们一直在开发基于微波的结冰探测传感器,而人工智能和AR等新技术的加入可以成倍提高这些传感器的效能。”
0 W4 M/ d- T+ Z2 A# N 新开发的传感器可以检测和定位多层涂层中的侵蚀层,还可以检测保护涂层的总磨损深度。收集到这些信息后,工程师和使用者可以详细了解潜在的损害和故障危险。 $ M; ]9 d% h7 t/ I7 F" p7 N9 ~1 u. U
在实验室中,差分网络设备接口系统在不同的温度(酷热和严寒)、不同的湿度和紫外线照射水平下进行了测试,以模拟几种恶劣的环境。在四种不同类型的实验装置中,使用不同类型的涂层对所开发的系统进行了测试,并对其响应进行了监测,这些实验装置都能实现所需的环境参数变化。 4 p3 Y* G& K. M( N* J: c
Balasubramanian说:“我们在一些最恶劣的环境下测试了传感器,包括各种温度、湿度和紫外线照射。我们不断挑战这些传感器所能承受的极限,以便走在世界各地发生的灾害的前面。”
, X- M+ f* G5 t: y, u- y' a+ z 这项研究得到了加拿大国防部、加拿大自然科学和工程研究理事会以及加拿大创新基金会的资助。
- |* S3 I6 `" M3 `6 ]) a3 {: n
" Q) Z3 @2 ^, q) a7 I. M, N6 e& k5 p
8 w' y. r: W0 Z/ I+ c8 n3 y1 k
" g1 G4 ]9 M& D5 i" t2 w
# A4 A2 L" @, V# D/ T3 g |