$ Q; g4 F; @# \" @. D( s , g' a/ [$ \1 G3 D
广告 胆小者勿入!五四三二一...恐怖的躲猫猫游戏现在开始!
1 \% [, i6 |$ h# W2 U% q × + Y4 P: s" R, [$ W2 t! j: M. U
Z, k% X# P( V
& O* y8 }3 V8 F& l: O# \1 ~ 当风雨敲打着风力发电机的叶片时,不列颠哥伦比亚大学奥卡纳干分校(UBC Okanagan)的研究人员在数百公里外仔细观察屏幕,分析叶片的涂层能否承受住风雨的侵袭。 3 N, V6 @9 A# L( Z4 ]
虽然这只是在实验室里进行的测试,但研究人员正在努力改进涡轮机、直升机螺旋桨甚至桥梁等结构的监测方式,以防止天气造成的损坏。
1 Q; C- X7 I+ Z% P- o UBC奥卡纳干分校博士生Vishal Balasubramanian解释说,从航空到海洋运输,从可再生能源发电到建筑,不断变化的气候使得各行各业对更好的“侵蚀—腐蚀”监测的需求与日俱增。
3 C# z0 H5 J2 j8 v- a* Z 在许多行业中,耐磨涂层用于保护结构免受侵蚀磨损。然而,这些涂层的使用寿命有限,会随着时间的推移而磨损。因此,需要定期检查这些涂层结构是否有磨损和破损,然后通过重新涂覆受损区域来修复。
8 ^1 d$ [7 e% g% Z Balasubramanian是UBC奥卡纳干微电子和千兆赫应用实验室(OMEGA)的研究人员之一,目前正在开发可直接嵌入涂层的传感器。这可以避免人为因素造成的误差,并大大缩短检测时间。通过将人工智能(AI)和增强现实(AR)技术集成到这些嵌入式传感器中,研究人员可以实时监测机械保护涂层的磨损情况,从而防止灾难性故障的发生。
+ s& Z6 e: }! Q& w 作为最近发表在《自然·通讯 》(Nature Communications)上的这项研究的主要作者,Balasubramanian解释说:“通过将人工智能技术应用到我们的微波谐振器传感器中,我们不仅能够检测到表面涂层的侵蚀,还能分辨出多层涂层中的单个涂层何时受到侵蚀。” / |! j! ~+ o) R: q" C& ~* z3 G& P
一些研究表明,美国每年因金属腐蚀造成的损失接近3000亿美元,超过该国国内生产总值的3%。但这不仅仅是钱的问题。 ) E5 v, E, o9 d' ^: s! R8 P5 c
Balasubramanian解释说,侵蚀会对桥梁、飞机、汽车和海军基础设施的外表面造成不可逆转的损害。历史上有一长串结构性故障灾难,侵蚀被认为是导致数千人丧生的结构性故障的主要原因,其中包括2018年意大利热那亚大桥垮塌、1984年印度博帕尔天然气悲剧和2000年得克萨斯州卡尔斯巴德天然气管道大火。
8 k# V0 R/ s1 [' Y W3 t$ ]5 l “能够主动监测和解决设备老化问题——尤其是在恶劣的环境中——无疑可以保护重要的基础设施,减少对人类生命的影响,”UBC奥卡纳干工程学院副教授、OMEGA实验室首席研究员穆罕默德·扎里菲(Mohammad Zarifi)博士说,“几年来,我们一直在开发基于微波的结冰探测传感器,而人工智能和AR等新技术的加入可以成倍提高这些传感器的效能。”
7 a0 m# S% g9 f, t1 P 新开发的传感器可以检测和定位多层涂层中的侵蚀层,还可以检测保护涂层的总磨损深度。收集到这些信息后,工程师和使用者可以详细了解潜在的损害和故障危险。 : S0 o+ `1 U' w; b1 K/ ~2 i$ X* c- L
在实验室中,差分网络设备接口系统在不同的温度(酷热和严寒)、不同的湿度和紫外线照射水平下进行了测试,以模拟几种恶劣的环境。在四种不同类型的实验装置中,使用不同类型的涂层对所开发的系统进行了测试,并对其响应进行了监测,这些实验装置都能实现所需的环境参数变化。
: u5 A7 S8 r+ n) Q& H Balasubramanian说:“我们在一些最恶劣的环境下测试了传感器,包括各种温度、湿度和紫外线照射。我们不断挑战这些传感器所能承受的极限,以便走在世界各地发生的灾害的前面。”
) S9 ^6 Q2 v0 r& F 这项研究得到了加拿大国防部、加拿大自然科学和工程研究理事会以及加拿大创新基金会的资助。
- Y7 c. k: R/ y: z8 u+ b( H" I
! B5 S* ~' F+ r' O
# U9 |! j8 R2 p& C1 o; t% s# M, L+ {$ a, F$ b- V/ q
6 |; P9 z% K" z* e7 R/ D |