[数据处理] 利用Python工具实现热带气旋数据分析和可视化

[复制链接]

Tropycal是旨在简化提取和分析热带气旋数据的Python工具,可以同时处理历史和实时数据,主要面向研究和业务气象部门。文末可获取相关教程文件。

Tropycal可以处理 HURDAT2和IBTrACS再分析以及业务NHC最佳路径数据,可用于气候、季节性和单个雷暴分析

对于每个单独的风暴,国家飓风中心的业务预报、飞机观测数据和任何相关的龙卷风活动都可以提取和绘制。

0 P5 N/ P' ^" s0 i) D! e3 a

安装- S1 R) M1 H# z1 D8 P0 i7 u

) N9 U* q" V% o* r2 i2 n

与常规python工具安装方法类似,可直接利用 pip 进行安装,如下:

[Python] 纯文本查看 复制代码
pip install tropycal

或者下载源代码进行安装:

[Python] 纯文本查看 复制代码
[/color]git clone[url=https://github.com/tropycal/tropycal]https://github.com/tropycal/tropycal[/url][/p][p=null, 2, left][color=rgb(0, 0, 0)]cdtropycal[/color][/p][p=null, 2, left][color=rgb(0, 0, 0)]python setup.py install

示例

官方文档中提供了很多示例,包括龙卷分析、单个雷暴分析、热带气旋数据集分析。

示例中给出的分析可视化结果都非常不错,从可视化的角度而言很值得学习。

龙卷分析

官方示例中给出的示例,可直接加载龙卷数据集进行分析。

[Python] 纯文本查看 复制代码
importtropycal.tracks astracks
importtropycal.tornado astornado
importdatetime asdt
tor_data = tornado.TornadoDataset()
tor_ax,domain,leg_tor = tor_data.plot_tors(dt.datetime(2011,4,27),plotPPH=True,return_ax=True)
tor_ax

7baed1222df25567aee7279e044d9719.jpeg


/ i1 n* f; P+ D5 J& m  i

龙卷路径和PPH(Practically Perfect Forecast)分布

- Q, C6 a. \3 L" C) q, H# `
  • 使用追踪数据集

    ' U! h, T! O1 Y' b. X

[Python] 纯文本查看 复制代码
hurdat_atl = tracks.TrackDataset(basin='north_atlantic',source='hurdat',include_btk=False)
storm = hurdat_atl.get_storm(('ivan',2004))
storm.plot_tors(plotPPH=True,return_ax=True)

0ebc6607a133a3b1dfe84443d000eecc.png

# [, G, }, |, c/ }& L4 v3 z/ X4 y, ]( c

Ivan飓风移动路径和PPH

8 t' }. e' e' H* f  c$ j4 l
单个雷暴分析

官方文档中给出了HURTDAT2、IBTrACS数据集以及单个雷暴的分析示例。

[Python] 纯文本查看 复制代码
importtropycal.tracks astracks
importdatetime asdt
hurdat_atl = tracks.TrackDataset(basin='north_atlantic',source='hurdat',include_btk=False)
storm = hurdat_atl.get_storm(('michael',2018))
storm.plot(return_ax=True)

3b5e09969635aeea23c0d1febe228959.png

) o% }  ]' s- _, A9 [

Michael飓风移动路径


* }# u9 p/ ]) T+ H  X9 O. `1 i

[Python] 纯文本查看 复制代码
storm.plot_nhc_forecast(forecast=2,return_ax=True)

2709de8905341ba45fb5283bde74c6b7.png

' f4 Y- J5 r% p

潜在的热带气旋预报

0 I, x5 L% n, l2 ]/ ^& T
TC数据集分析

在TC数据集部分,利用上述提到的两种数据集对雷暴进行了简单的分析,比如空间分布、最大风速以及移动路径。

[Python] 纯文本查看 复制代码
ibtracs = tracks.TrackDataset(basin='all',source='ibtracs',ibtracs_mode='jtwc_neumann',catarina=True)
ibtracs.gridded_stats(request="maximum wind",return_ax=True)

5ee88ae54d26f8725de21edac847f6be.png


8 H  V/ `# E, m- A, G* v* X

热带气旋最大风速分布


9 R* ~  i$ J* ^

除了绘图部分外,官方文档还提供了数据源的说明,可点击阅读原文前往官方文档查看相关页面。


  w4 t4 \- h# X

除了官方文档提供的可视化分析之外,官方的示例脚本源中也提供了一些额外的分析和可视化内容,部分结果如下图所示:

% d2 Z8 M  f, x* e

16af6fb7d03b084d3795552e0b704336.png

dd119535877d9e64d55a86adedf64295.png

b60b4f8d461eec9e82f6106a9cec7756.png

就介绍到这里,感兴趣的可以前往官方文档或官方源查看更详细的信息。

参考链接:


9 V9 o. z  y5 d! I; f2 ?! c

1. https://github.com/tropycal

2. https://tropycal.github.io/tropycal/

3. https://github.com/tropycal/samp ... Tropical_Talk.ipynb

; d1 L% t6 A0 `( w$ X7 ~
0 s$ v- ~' f9 S; b$ l' p8 n

& M5 @3 m* W% r
f86bce10e9405b58c34cf5d5e81887c6.png
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
文星雨
活跃在3 天前
快速回复 返回顶部 返回列表