[数据处理] 利用Python工具实现热带气旋数据分析和可视化

[复制链接]

Tropycal是旨在简化提取和分析热带气旋数据的Python工具,可以同时处理历史和实时数据,主要面向研究和业务气象部门。文末可获取相关教程文件。

Tropycal可以处理 HURDAT2和IBTrACS再分析以及业务NHC最佳路径数据,可用于气候、季节性和单个雷暴分析

对于每个单独的风暴,国家飓风中心的业务预报、飞机观测数据和任何相关的龙卷风活动都可以提取和绘制。


' s) `2 J/ \, k7 q

安装
& C9 g2 y% N7 K6 W4 k! p) ]
# F$ B, w# }, Y: w3 o. v! x- T

与常规python工具安装方法类似,可直接利用 pip 进行安装,如下:

[Python] 纯文本查看 复制代码
pip install tropycal

或者下载源代码进行安装:

[Python] 纯文本查看 复制代码
[/color]git clone[url=https://github.com/tropycal/tropycal]https://github.com/tropycal/tropycal[/url][/p][p=null, 2, left][color=rgb(0, 0, 0)]cdtropycal[/color][/p][p=null, 2, left][color=rgb(0, 0, 0)]python setup.py install

示例

官方文档中提供了很多示例,包括龙卷分析、单个雷暴分析、热带气旋数据集分析。

示例中给出的分析可视化结果都非常不错,从可视化的角度而言很值得学习。

龙卷分析

官方示例中给出的示例,可直接加载龙卷数据集进行分析。

[Python] 纯文本查看 复制代码
importtropycal.tracks astracks
importtropycal.tornado astornado
importdatetime asdt
tor_data = tornado.TornadoDataset()
tor_ax,domain,leg_tor = tor_data.plot_tors(dt.datetime(2011,4,27),plotPPH=True,return_ax=True)
tor_ax

7baed1222df25567aee7279e044d9719.jpeg

, o3 U/ k: P# d9 Z# y' z

龙卷路径和PPH(Practically Perfect Forecast)分布


/ j0 S& N3 S* X& L, P3 H9 }7 b1 G
  • 使用追踪数据集


    9 l  _5 h3 ^3 C+ ^( t2 ?0 S) \; M

[Python] 纯文本查看 复制代码
hurdat_atl = tracks.TrackDataset(basin='north_atlantic',source='hurdat',include_btk=False)
storm = hurdat_atl.get_storm(('ivan',2004))
storm.plot_tors(plotPPH=True,return_ax=True)

0ebc6607a133a3b1dfe84443d000eecc.png


% R) v1 x1 l% L! d. v& Z1 [$ q

Ivan飓风移动路径和PPH


/ e3 G' _. }; y7 F  r$ \; H单个雷暴分析

官方文档中给出了HURTDAT2、IBTrACS数据集以及单个雷暴的分析示例。

[Python] 纯文本查看 复制代码
importtropycal.tracks astracks
importdatetime asdt
hurdat_atl = tracks.TrackDataset(basin='north_atlantic',source='hurdat',include_btk=False)
storm = hurdat_atl.get_storm(('michael',2018))
storm.plot(return_ax=True)

3b5e09969635aeea23c0d1febe228959.png


. k6 d* Z6 m& u! _7 R; I/ k

Michael飓风移动路径

6 b& K5 `, D+ U/ J$ u6 J" c) l

[Python] 纯文本查看 复制代码
storm.plot_nhc_forecast(forecast=2,return_ax=True)

2709de8905341ba45fb5283bde74c6b7.png


* h+ J7 z, ^% S

潜在的热带气旋预报


/ }. i' _4 F( K& i) V: PTC数据集分析

在TC数据集部分,利用上述提到的两种数据集对雷暴进行了简单的分析,比如空间分布、最大风速以及移动路径。

[Python] 纯文本查看 复制代码
ibtracs = tracks.TrackDataset(basin='all',source='ibtracs',ibtracs_mode='jtwc_neumann',catarina=True)
ibtracs.gridded_stats(request="maximum wind",return_ax=True)

5ee88ae54d26f8725de21edac847f6be.png


4 U7 u# p5 [  z" }6 C1 o  W; A8 W

热带气旋最大风速分布


$ |' z* X3 t0 [7 q9 p8 Z/ O7 _

除了绘图部分外,官方文档还提供了数据源的说明,可点击阅读原文前往官方文档查看相关页面。


! i+ s0 c" v4 v9 m- ^

除了官方文档提供的可视化分析之外,官方的示例脚本源中也提供了一些额外的分析和可视化内容,部分结果如下图所示:


, z3 S' Y! _/ N; B' h

16af6fb7d03b084d3795552e0b704336.png

dd119535877d9e64d55a86adedf64295.png

b60b4f8d461eec9e82f6106a9cec7756.png

就介绍到这里,感兴趣的可以前往官方文档或官方源查看更详细的信息。

参考链接:


" ]; D4 s2 R3 F/ _& }

1. https://github.com/tropycal

2. https://tropycal.github.io/tropycal/

3. https://github.com/tropycal/samp ... Tropical_Talk.ipynb


& Y. H% A3 b, ~8 ^* B) ]
4 t4 r' m# Z5 v1 g5 ^* f- ^
2 n$ V  L( ]5 S" l
f86bce10e9405b58c34cf5d5e81887c6.png
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
文星雨
活跃在3 天前
快速回复 返回顶部 返回列表