( U5 h1 j) D3 Q! \/ | 7 y0 ^! G# ~% o$ {0 k, w
广告 胆小者勿入!五四三二一...恐怖的躲猫猫游戏现在开始!
' O7 J1 Q; J' ] × 7 I* M! Z5 E& T6 k: ~( _) Z
4 f# r" X d+ w4 [8 ]
4 ~8 z1 K& c" O3 i6 r 当风雨敲打着风力发电机的叶片时,不列颠哥伦比亚大学奥卡纳干分校(UBC Okanagan)的研究人员在数百公里外仔细观察屏幕,分析叶片的涂层能否承受住风雨的侵袭。 0 T$ ]$ E+ [% p( B e4 v
虽然这只是在实验室里进行的测试,但研究人员正在努力改进涡轮机、直升机螺旋桨甚至桥梁等结构的监测方式,以防止天气造成的损坏。
$ Y' H, }/ l( A1 {! `- q' Q2 p UBC奥卡纳干分校博士生Vishal Balasubramanian解释说,从航空到海洋运输,从可再生能源发电到建筑,不断变化的气候使得各行各业对更好的“侵蚀—腐蚀”监测的需求与日俱增。
9 i8 m" @ V N; @, r0 L: I 在许多行业中,耐磨涂层用于保护结构免受侵蚀磨损。然而,这些涂层的使用寿命有限,会随着时间的推移而磨损。因此,需要定期检查这些涂层结构是否有磨损和破损,然后通过重新涂覆受损区域来修复。 % _" a# H& z2 y% n% j6 z$ o; c
Balasubramanian是UBC奥卡纳干微电子和千兆赫应用实验室(OMEGA)的研究人员之一,目前正在开发可直接嵌入涂层的传感器。这可以避免人为因素造成的误差,并大大缩短检测时间。通过将人工智能(AI)和增强现实(AR)技术集成到这些嵌入式传感器中,研究人员可以实时监测机械保护涂层的磨损情况,从而防止灾难性故障的发生。 ; @/ y+ |. U7 { Q/ W) y( J. N- N
作为最近发表在《自然·通讯 》(Nature Communications)上的这项研究的主要作者,Balasubramanian解释说:“通过将人工智能技术应用到我们的微波谐振器传感器中,我们不仅能够检测到表面涂层的侵蚀,还能分辨出多层涂层中的单个涂层何时受到侵蚀。” ; K* ~. h# i2 u- x
一些研究表明,美国每年因金属腐蚀造成的损失接近3000亿美元,超过该国国内生产总值的3%。但这不仅仅是钱的问题。
; h8 b ]# J5 k+ n7 M" Y Balasubramanian解释说,侵蚀会对桥梁、飞机、汽车和海军基础设施的外表面造成不可逆转的损害。历史上有一长串结构性故障灾难,侵蚀被认为是导致数千人丧生的结构性故障的主要原因,其中包括2018年意大利热那亚大桥垮塌、1984年印度博帕尔天然气悲剧和2000年得克萨斯州卡尔斯巴德天然气管道大火。 - r+ A7 v# c% B. d" q% @( L$ ?
“能够主动监测和解决设备老化问题——尤其是在恶劣的环境中——无疑可以保护重要的基础设施,减少对人类生命的影响,”UBC奥卡纳干工程学院副教授、OMEGA实验室首席研究员穆罕默德·扎里菲(Mohammad Zarifi)博士说,“几年来,我们一直在开发基于微波的结冰探测传感器,而人工智能和AR等新技术的加入可以成倍提高这些传感器的效能。”
+ J8 i; O6 h* Y2 T+ M9 d 新开发的传感器可以检测和定位多层涂层中的侵蚀层,还可以检测保护涂层的总磨损深度。收集到这些信息后,工程师和使用者可以详细了解潜在的损害和故障危险。
$ G, Q3 }3 {9 L. K f0 o 在实验室中,差分网络设备接口系统在不同的温度(酷热和严寒)、不同的湿度和紫外线照射水平下进行了测试,以模拟几种恶劣的环境。在四种不同类型的实验装置中,使用不同类型的涂层对所开发的系统进行了测试,并对其响应进行了监测,这些实验装置都能实现所需的环境参数变化。 2 W* W6 k3 F6 [; k2 T8 j
Balasubramanian说:“我们在一些最恶劣的环境下测试了传感器,包括各种温度、湿度和紫外线照射。我们不断挑战这些传感器所能承受的极限,以便走在世界各地发生的灾害的前面。”
. u/ T( x# C3 t( Z# L, m6 o" l 这项研究得到了加拿大国防部、加拿大自然科学和工程研究理事会以及加拿大创新基金会的资助。
8 {: N( I; l' w! d+ ^
/ T; o8 l4 v: r7 Y# ?
4 \6 x8 A" W5 x& j: T5 a. W; }
! K5 h. L, q! F- c( N, S6 e' A7 w- o) t
|