1.POM模式概况 前文用了两篇文章的篇幅讲述了如何从0到1实现一个浅水方程,涉及到了交错网格、差分离散化和初边值条件的处理等等。本文就来探讨一下海洋模式中最经典的模式之一,POM模式。9 K$ f+ Y0 ?( q% `8 ]- m) L/ w- @* \
POM模式的全名为Princeton Ocean Model,在1970年代由G.Mello和Alan Blumberg所开发。经过发展和维护,逐渐成为了可以胜任数值实验和业务化应用的经典模式。尽管从2021年的今天来看,这个模式可能略微跟不上时代,但其经典型和代表性是模式学习者所绕不开的。后续很多海洋模式都是从POM中修改而得到的。POM是一个串行模式,所有代码都写在一个Fortran文件之中。不涉及多文件编译,而且代码结构清晰,是模式学习者初学的首选。除此之外,对于模式的高性能计算的学习者来说,优化POM模式也是很好的实战案例。倘若能用MPI把POM模式改写成并行代码,对代码能力的锻炼是很显著的。
) L# O( ? d' p POM模式的原始控制方程如下。
4 d$ D6 P/ E( S& T5 S4 ]" D9 F5 C* d; H
7 g2 f! @* ?+ D2 ^( ^3 K
2.Sigma坐标系 前文讲述的浅水模式,介绍了蛙跳格式和交错网格。由于浅水方程组对NS方程做了垂向平均,因此前面提到的网格都是水平网格。在真实的海洋模拟中,水平尺度大于垂直尺度。海底地形起伏较大,所模拟的海区水深可能从几十米到几千米深。如果使用传统的笛卡尔正交坐标系,会出现垂直步长dz不论怎么取都不能满足所有需求。假如近岸水深50m,远洋水深10000m,如果dz取5m,近岸则有10层的网格,而远洋则会出现2000层的网格,造成了极大的计算资源浪费。而如果dz取的比较大,在浅海地区的层数就少的可怜。除此之外,笛卡尔正交坐标系划出的锯齿状很难贴合边界,由下图可以看出,Z坐标系中被底地形横切的网格,不论当做海洋还是当做底地形都会影响精度。
+ j7 l8 P) b/ R POM模式给出的解决方案是采用sigma坐标系,该坐标系也被称为地形追随坐标系。有图中可以看出,该坐标系能把海洋各个位置均等的划分同样的层数,在边界上也能很好的贴合地形。因此,在推导POM的方程时,要做的第一步就是将上述控制方程一一进行sigma变换,得到在sigma坐标下的控制方程。% B0 y3 t% G7 d9 J6 Q
/ a0 g/ p5 R0 V0 Q8 s# `
% d; C7 E0 y& e. { 根据链式法则,就可以得到每个导数项的关系。
# L4 i" u0 b% v! n0 ]3 w. `' p2 v; _) ^& U
/ A2 D2 j2 D# h7 E* n v. V5 B) I
用s代表x,y,t的任一项,D海底到自由表面的高度,即
4 [! U2 Z/ q- e! E( d/ W3 ?) k ,可得到如下表达式。
( c9 C; ~1 z+ u/ C# L; {8 m, b; J2 v' ~' t9 H9 [5 Q
6 D' ~* S6 o7 n% y( ^( `; p j8 @# ` 由此推导下去即可得到sigma坐标下的控制方程,推导过程极其繁琐,再此省略了推导的中间过程,直接给出结果。为表示方便,后文sigma坐标系的变量中省略其右上角的星号。若对推导的详细过程感兴趣,见文末参考资料。
' F8 W9 d6 s! r. M
2 T5 l2 h t6 `2 X6 U5 g+ Y- i! w. f6 e1 M1 Q
3.内外模态分离 首先,再回顾一下第一篇文章所讨论过的CFL条件,上次是从数学的角度理解CFL条件为什么能确保线性偏微分方程稳定,这次从波动的角度理解一下CFL条件的意义。由于海洋和大气的动力框架系统为高度非线性系统,因此其稳定性变得更加难以控制。CFL条件是一种很好的参考,而无法绝对确保稳定。9 w1 P5 j7 O$ Q& Q* G0 |
4 t! b2 Q2 I& e% l9 x4 J
/ M/ r# u% H; w4 \ CFL条件中c的物理意义是波速。假设 ,那么此时 。可以看出网格的步长比和波的传播速度相同,意味着这样的网格分辨率是无法分辨这个波的。而当% n& A# ^) V! u; L$ G; m
时,波速比步长比要大,同样是无法解得这个波的运动状态。这样描述或许不够严谨,但是有助于理解CFL条件的物理意义。结合海洋的实际情况来看,在表层的表面重力波的波速约为200-300m/s,而在海洋内部的重力内波波速远小于表面重力波,大概是在5m/s左右。可以看出,海洋内部的运动过程和海洋表层的运动过程时间尺度相差较大,表层明显快于内部。再回看CFL条件,可以看出如果要想同时满足海洋表层和海洋内部的稳定,表层就需要迁就内部。而POM模式的做法是将表层和内部分离。把表层的正压过程和内部的斜压过程分别称为外模态和内模态,分别设置时间步长。
) L( p: S0 D4 i. x1 M& p ~ 先来看外模态(即正压模态),该部分也被称为快过程,时间步长较小。处理方式类似于浅水方程的推导,对其所在区域做垂向积分,忽略了水平扩散项。在sigma坐标系下的方程组如下所示。' ^& V j5 L9 F" Z
+ q! T" u7 Y; [) @
# v% M& p! \' H5 T 对于内模态,则方程形式和第二部分列的形式一样。由于外模态时间步长短,内模态时间步长较长。在POM模式中,内模态的时间步长通常是外模态的数十倍。如果将POM模式的整体结构写成伪代码的话,可以写成如下形式。内模态的时间步长是外模态的isplit倍,这样外模态就可以嵌套在内模态的循环里写。# H$ v, L9 E. l$ @8 X
program POM, l! e4 U: _* o, d" H
Init Paramter !初始化各种参数,如im,jm等 Init Variable !初始化T,S,U,V,W等 do iint=1,iend !内模态循环 call advct() !计算平流项 call baropg() !计算压强梯度力 do iext=1,isplit !外模态循环 compute el !计算eta compute ua !计算正压ua compute va !计算正压va compute ut,vt!计算正压平均速度 end do !外模态循环结束 adjust u,v ! call vertvl !计算垂直速度 call advq !计算km,kh call profq( x1 I/ k0 j9 [& }- r7 { j
call advt !计算T和S call proft) A4 }" [) r- X" y% L& G( p3 ^
call dens !计算密度 call advu !计算u call profu
& {2 g% v1 O2 t* \6 ^ call advv !计算v call profv
' B; U! H/ O: a" |8 i' M2 A. U+ P print !将结果输出 end do !内模态结束end4.湍流闭合方案# I& i, D, r5 w- v8 p
# D7 F, R9 s4 ~% [" ~
通过观察可以发现,本文最开端给出的POM原始方程的运动方程和温盐方程都有 或 。而在这些方程的末尾,也有 , , 或 这些项。这些项的存在使得方程的未知量多于待求解的变量,而如果忽略这些项则会对模拟结果大打折扣。因此,需要解决这些参数的设置问题,而POM模式选择了使用Mellor-Yamada方案,具体形式如下。1 v$ c% m& g' G6 v% }+ {0 Q
; J$ w0 o& H+ z4 Q0 Z( ~7 H- [/ l9 z2 V, e( x
w8 Y! L& e1 J, c" H6 F# p, ~ 湍流是一个十分复杂的现象,如果想理解湍流参数化方案,就需要理解什么是湍流。下文将从湍流的本质讲起,逐渐引出湍流参数化方案的全貌。当对模式的动力框架有了比较明确的理解之后,再去看模式代码甚至修改模式代码,就会容易很多。7 i5 E+ a/ l, \- |
版权声明 本文创作的初衷是用于帮助数值模式的学习者。欢迎转载,转载请私信并注明作者和出处,请勿用于任何商业用途。
: U0 o r1 {: [" j; a3 ?参考资料A Manual for POM and GOMO. Xiaomeng Huang, Xing Huang. Users Guide For A Three-Dimensional Numerical Ocean Model. George L. Mellor. CEE262c Lecture 8: Sigma coordinates and mode splitting: The Princeton Ocean Model (POM).
" t$ i3 s/ }, X: O: _6 ^3 p& D3 g7 d3 e5 ]- N. J
|