收藏本站 劰载中...网站公告 | 吾爱海洋论坛交流QQ群:835383472

千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明

[复制链接]
1 X( d. N" @( f! q2 U* D

3 y0 l$ o6 j) G2 @) b. _4 O8 N& r
美国著名物理学家、诺贝尔奖获得者费曼曾经说过:湍流是经典物理学中最后一个尚未解决的重要问题。从雷诺1883年在曼切斯特做的圆管流动实验开始算起,虽然湍流现象已经被广泛研究了近140年,但是湍流产生的物理机理至今仍不清楚。据传,量子力学奠基人之一、德国著名物理学家、诺贝尔奖获得者海森堡临终前曾在病榻上说过一句话:“当我见到上帝后,我一定要问他两个问题——什么是相对论,什么是湍流。我相信他只对第一个问题应该有了答案”。由此可见,湍流问题的解决难度之大令人难以想象。
& J5 K# u9 }7 R0 ], o  |纳维-斯托克斯(Navier-Stokes)方程是由法国科学家纳维(1821)和英国科学家斯托克斯(1845)建立的。经过100多年的研究,人们相信Navier-Stokes方程是描述湍流的正确方程。现代Navier-Stokes方程直接数值模拟(DNS)的结果几乎与实验数据完全一致。从工程角度考虑,Navier-Stokes方程描述湍流已满足应用要求。但是,数学家更关心的是纳维-斯托克斯方程的解的存在性与光滑性,这个问题至今没有得到证明。为此,美国Clay数学所在2000年公布的7个千禧年百万美元大奖难题中,Navier-Stokes方程为其中之一。
) J4 k) i, e# K; S                                
4 C  c7 f6 C" y# l) O8 E' j
                               
登录/注册后可看大图

/ P7 x% a2 |! Y) B: ]7 V& Y+ f. T" R0 A9 x
1934年,法国数学家勒雷(Leray)证明了纳维-斯托克斯问题弱解的存在,此解在流场中平均值上满足纳维-斯托克斯问题,但无法在整个定义域的每一点上满足。现在,数学家想要解决的是纳维-斯托克斯的强解问题,即其解需要在流场中定义域上的每一点上都要满足。用另一种说法,对一给定的起始点流动条件,可以准确预测随时间变化后面发展的任意时刻的流动状况。或者对湍流流动中的任何一点任意时刻的流动,可以精确追溯到它的起始点的流动的起始条件。
& Y! D+ |4 L/ ]; [9 r8 v7 y2 l  k0 o: |$ e; S. Y, x
美国Clay数学所设定了该问题具体的数学描述[1]:证明或反证下面的问题:在三维的空间及时间下,给定一起始的速度场,存在一矢量的速度场及标量的压力场,为纳维-斯托克斯方程的解,其中速度场及压力场需满足光滑及全局定义的特性。& X- N) c( r! g0 [0 n+ J" _

/ ^1 C' S; Q2 }2 q7 B对转捩流动和湍流流动,我们同时用能量梯度理论和泊松方程分析两种不同的方法证明了Navier-Stokes方程不存在全局域上的光滑解。理论得到了实验结果及数值模拟结果的验证。我们采用能量梯度理论的证明请见文献[2]。下面是采用泊松方程分析方法的证明[3]:
4 A: u" ^- @. L) t0 v6 i7 h' _
0 j( B8 R: n: M0 E6 ^& g$ @3 s( y) \1 v8 |# V/ C( d

& L0 a9 e' i8 B7 [$ K3 y/ A* h2 z# R8 I4 ?
(1)对三维空间的平面channel流动(压力驱动流动),Navier-Stokes方程可以写成下面泊松方程的形式,
# v2 {4 ]& S/ {- `. K! T! W1 p& f∇2u(x,y,z)=Fx(x,y,z,t),在静止壁面上的边界条件为 u=0,式中u为x方向的速度分量。在整个定义域上,定义源项 Fx(x,y,z,t)>0 and Fx(x,y,z,t)≠0。如果Fx(x,y,z,t)=0,则整个域上流体是静止的,所讨论的问题就没有意义了。对y和z方向,可以写出另外2个速度分量的泊松方程,这里我们只讨论u分量。
: ?+ P" B! ]. n) d) {6 r给定起始条件,按照要求,这里我们规定起始速度场为一光滑的层流流场。然后,观察流场在扰动作用下的发展和变化,这是层流到湍流的转捩过程中的转捩流动(transitonal flow)的特征。: _, C& G+ D: m
(2)根据观察(实验和数值模拟),层流流动在扰动与基本流动相互作用下,在足够高的雷诺数下,速度剖面会发生扭曲,畸变。研究发现,在一定的扰动程度下,流场中存在这样的点,Fx(x,y,z,t)=0 (详细发现请见下面文献)。下面用两种观点来解释此处为奇点:(a)Fx(x,y,z,t)=0 这样的点在流场中定义域上是没有定义的,所以在转捩流动中出现的这样的点是流场中的奇点。 (b)我们知道,奇点是没有体积的。当流场中 Fx(x,y,z,t)=0 的点形成后,随时间进一步发展,Fx(x,y,z,t)=0 的点在y方向具有一定宽度(宽度大于0),此时利用泊松方程解出的当地速度为 u=0。说明此处流向速度u发生了间断,间断点即为奇点。
% |0 U, W8 S9 q: d4 H& f由上面论证可知,Fx(x,y,z,t)=0 这样的点是泊松方程(Navier-Stokes方程)在流场中定义域上的奇点。另外, 我们用能量梯度理论也已经精确地证明了,在压力驱动的流动中,这样的点必然发生流向速度的间断[2]。采用两种不同的方法得到的结果可以互相佐证。! @6 B: L3 O! X
(3)Navier-Stokes方程在流场中的奇点处速度导数不存在,所以是没有解的。因此,即使方程在流场中奇点以外的其他点上都有解,但由于奇点处没有解,流场的解是间断的,是不光滑的。我们得到结论:Navier-Stokes方程在转捩流动中是不存在光滑解的。, g% ~- i( m  z/ }8 g, E) ?
(4)对湍流流动(turbulence),由于流场中非定常的旋涡的存在,其瞬时流动分布,存在大量的奇点(Fx(x,y,z,t)=0的点)。实际上,湍流的维持就是依靠这些奇点存在而实现的。因此,对湍流流动,Navier-Stokes方程不存在光滑解。
2 Y: |& b5 x0 O5 c1 Z' t/ ~9 C3 _3 Y% S
8 G- ~9 w  J( o, {

8 d. ]7 I  Q% F需要指出,上述奇点的出现是因为,三维空间的平面channel流动(plane Poiseuille flow)的泊松方程的源项是不能任意的,必须大于零的(或者小于零,即速度沿x负轴方向流动)。从物理学上考虑,就三维空间的平面channel流动来说,对层流流动和湍流流动,这个给定的源项的约束定义,都是必需的。否则,这个问题就不是 well posed。如果我们讨论的是两个平板间的三维的热传导问题,其泊松方程的源项是可以任意的,而源项为零的点就不是其泊松方程的奇点(因为是具有定义的点)。具有不同的约束性质的这2个问题,不能统一按一般泊松方程的特性来讨论。
6 v+ ?* A" r9 ?- s; }  ]0 S 6 W% q1 S6 w. J3 G
结论:对转捩流动和湍流流动,纳维-斯托克斯方程的解的存在性与光滑性问题,答案是否定的。
5 \- h/ G# K: A- Z8 I
4 \5 P2 `" U9 G: Y& E  V参考文献
: A# ]9 H, X$ U. O1 A' P1.   Fefferman, C.L. Existence and Smoothness of the Navier-Stokes Equation; Clay Mathematics Institute: Peterborough, NH, USA, 2000; pp. 1–6.
$ Q% A, k1 ]8 q2 b2 hwww.52ocean.cn
% m. R! K1 t. i1 s4 n( N/ e2.   Dou, H.-S., Singularity of Navier-Stokes Equations Leading to Turbulence, Adv. Appl. Math. Mech., 13(3),2021, 527-553.  https://doi.org/10.4208/aamm.OA-2020-0063      https://arxiv.org/abs/1805.12053v10  " n7 a4 g+ H3 ]4 D: n) d( v6 U
3.   Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e24030339& N4 }$ a7 w8 C5 @. D' V

+ b4 e8 L  f; W7 V
% y0 |. X5 s9 j, c2 L& ?7 ?9 d$ M
1 k# d, F& `7 K+ U2 i8 Q# i
! O1 f8 Q# l; i
$ B4 y0 i0 Z+ Z' \  X1 j* g
) K' z* q! Z* |7 y- c. G. H7 X

. F2 d- I! e0 D. V& n9 b( I2 g3 Q8 C& v5 N1 G" i) o9 ?
" \3 H+ S* K8 H5 G* r) V
1 q3 O" ^( ~  ^' d

; F& P" Q6 o; F! x* C1 q" ?6 j6 B( i6 o. U

0 d' i7 q& @/ L, x' z- L: E: q8 q

% f- K" ~; g* Z6 }% \; k- B
, R! @# `5 a8 r( S$ y, i: P                    
; W' h- @$ K; x+ Q" c
2 F3 R+ J. B  d! J1 J! l0 I  U( ~7 [- i                                        转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
三观道人
活跃在3 天前
快速回复 返回顶部 返回列表