% W" L4 @. f! b: Y3 h* p3 z0 o# E9 g3 t
M1 Y7 \) h: Q1 B5 n; D/ T4 Y
美国著名物理学家、诺贝尔奖获得者费曼曾经说过:湍流是经典物理学中最后一个尚未解决的重要问题。从雷诺1883年在曼切斯特做的圆管流动实验开始算起,虽然湍流现象已经被广泛研究了近140年,但是湍流产生的物理机理至今仍不清楚。据传,量子力学奠基人之一、德国著名物理学家、诺贝尔奖获得者海森堡临终前曾在病榻上说过一句话:“当我见到上帝后,我一定要问他两个问题——什么是相对论,什么是湍流。我相信他只对第一个问题应该有了答案”。由此可见,湍流问题的解决难度之大令人难以想象。
' x/ w" D; C# L7 l& A4 b纳维-斯托克斯(Navier-Stokes)方程是由法国科学家纳维(1821)和英国科学家斯托克斯(1845)建立的。经过100多年的研究,人们相信Navier-Stokes方程是描述湍流的正确方程。现代Navier-Stokes方程直接数值模拟(DNS)的结果几乎与实验数据完全一致。从工程角度考虑,Navier-Stokes方程描述湍流已满足应用要求。但是,数学家更关心的是纳维-斯托克斯方程的解的存在性与光滑性,这个问题至今没有得到证明。为此,美国Clay数学所在2000年公布的7个千禧年百万美元大奖难题中,Navier-Stokes方程为其中之一。
- f. ]% u& Q* v' F. Y4 _6 q e; b( w5 z9 q, L" F) E
" T0 D2 h, `0 o O- h1934年,法国数学家勒雷(Leray)证明了纳维-斯托克斯问题弱解的存在,此解在流场中平均值上满足纳维-斯托克斯问题,但无法在整个定义域的每一点上满足。现在,数学家想要解决的是纳维-斯托克斯的强解问题,即其解需要在流场中定义域上的每一点上都要满足。用另一种说法,对一给定的起始点流动条件,可以准确预测随时间变化后面发展的任意时刻的流动状况。或者对湍流流动中的任何一点任意时刻的流动,可以精确追溯到它的起始点的流动的起始条件。- `7 }. H# E# L: R
" d! l& k! ^0 }& E" j
美国Clay数学所设定了该问题具体的数学描述[1]:证明或反证下面的问题:在三维的空间及时间下,给定一起始的速度场,存在一矢量的速度场及标量的压力场,为纳维-斯托克斯方程的解,其中速度场及压力场需满足光滑及全局定义的特性。5 ?! B3 j8 ]& l* z% j! s/ n
0 e. w9 o) ~& J# e* P U
对转捩流动和湍流流动,我们同时用能量梯度理论和泊松方程分析两种不同的方法证明了Navier-Stokes方程不存在全局域上的光滑解。理论得到了实验结果及数值模拟结果的验证。我们采用能量梯度理论的证明请见文献[2]。下面是采用泊松方程分析方法的证明[3]:
, O' K/ e0 d" n) @+ S
5 u e: ]9 z5 I, a8 f5 o5 t# S5 v! J
+ b: u2 J7 `' C0 w% i
& E. P( L! R4 ]& R( `
(1)对三维空间的平面channel流动(压力驱动流动),Navier-Stokes方程可以写成下面泊松方程的形式,8 k+ F! v9 g, q
∇2u(x,y,z)=Fx(x,y,z,t),在静止壁面上的边界条件为 u=0,式中u为x方向的速度分量。在整个定义域上,定义源项 Fx(x,y,z,t)>0 and Fx(x,y,z,t)≠0。如果Fx(x,y,z,t)=0,则整个域上流体是静止的,所讨论的问题就没有意义了。对y和z方向,可以写出另外2个速度分量的泊松方程,这里我们只讨论u分量。* S) u0 ]3 T& e* ]
给定起始条件,按照要求,这里我们规定起始速度场为一光滑的层流流场。然后,观察流场在扰动作用下的发展和变化,这是层流到湍流的转捩过程中的转捩流动(transitonal flow)的特征。
' T2 R8 L% s e0 r1 z(2)根据观察(实验和数值模拟),层流流动在扰动与基本流动相互作用下,在足够高的雷诺数下,速度剖面会发生扭曲,畸变。研究发现,在一定的扰动程度下,流场中存在这样的点,Fx(x,y,z,t)=0 (详细发现请见下面文献)。下面用两种观点来解释此处为奇点:(a)Fx(x,y,z,t)=0 这样的点在流场中定义域上是没有定义的,所以在转捩流动中出现的这样的点是流场中的奇点。 (b)我们知道,奇点是没有体积的。当流场中 Fx(x,y,z,t)=0 的点形成后,随时间进一步发展,Fx(x,y,z,t)=0 的点在y方向具有一定宽度(宽度大于0),此时利用泊松方程解出的当地速度为 u=0。说明此处流向速度u发生了间断,间断点即为奇点。
8 }- I- f$ C; ^3 e1 y7 H& m由上面论证可知,Fx(x,y,z,t)=0 这样的点是泊松方程(Navier-Stokes方程)在流场中定义域上的奇点。另外, 我们用能量梯度理论也已经精确地证明了,在压力驱动的流动中,这样的点必然发生流向速度的间断[2]。采用两种不同的方法得到的结果可以互相佐证。
! B! U+ f; O% z(3)Navier-Stokes方程在流场中的奇点处速度导数不存在,所以是没有解的。因此,即使方程在流场中奇点以外的其他点上都有解,但由于奇点处没有解,流场的解是间断的,是不光滑的。我们得到结论:Navier-Stokes方程在转捩流动中是不存在光滑解的。
4 F5 X4 Z. B& |( g# i0 r4 B! F5 Y(4)对湍流流动(turbulence),由于流场中非定常的旋涡的存在,其瞬时流动分布,存在大量的奇点(Fx(x,y,z,t)=0的点)。实际上,湍流的维持就是依靠这些奇点存在而实现的。因此,对湍流流动,Navier-Stokes方程不存在光滑解。
1 j+ o7 J: ^+ u' m0 ]
; T$ E( G! s6 F7 o6 d8 M! `' z6 f5 U: Z1 L: E3 [% ]
7 k. O- K/ \& N: F1 u# [需要指出,上述奇点的出现是因为,三维空间的平面channel流动(plane Poiseuille flow)的泊松方程的源项是不能任意的,必须大于零的(或者小于零,即速度沿x负轴方向流动)。从物理学上考虑,就三维空间的平面channel流动来说,对层流流动和湍流流动,这个给定的源项的约束定义,都是必需的。否则,这个问题就不是 well posed。如果我们讨论的是两个平板间的三维的热传导问题,其泊松方程的源项是可以任意的,而源项为零的点就不是其泊松方程的奇点(因为是具有定义的点)。具有不同的约束性质的这2个问题,不能统一按一般泊松方程的特性来讨论。6 h! `& k2 N$ ^3 [7 M1 B3 {% r
Q% Y& M! @. t4 \- Q
结论:对转捩流动和湍流流动,纳维-斯托克斯方程的解的存在性与光滑性问题,答案是否定的。* o1 r% e& ]7 J, o0 G/ |! t. F
5 D1 j2 ?. i# _9 w: |5 r6 y8 D! o参考文献% {" ?- j" H7 Q- J( y
1. Fefferman, C.L. Existence and Smoothness of the Navier-Stokes Equation; Clay Mathematics Institute: Peterborough, NH, USA, 2000; pp. 1–6. ! i. w& ^3 h; s- o5 h
www.52ocean.cn+ |( @8 A8 @# z; a [
2. Dou, H.-S., Singularity of Navier-Stokes Equations Leading to Turbulence, Adv. Appl. Math. Mech., 13(3),2021, 527-553. https://doi.org/10.4208/aamm.OA-2020-0063 https://arxiv.org/abs/1805.12053v10 8 R, n0 H7 l/ {3 k2 s! n
3. Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e24030339
2 w1 S" ^ Z+ F& I8 C( q0 E
# D! F9 [: Q3 X3 j$ n5 L" y2 \ Q2 m3 R! w s% G
2 @7 s- m+ }' d) h1 m& T& v% O2 N5 X+ |6 U
4 `: x9 m+ ?( i: J7 x2 H. \8 R! v Q% [7 |2 _) @& m( c/ O, t
' p, T4 v+ y" ^4 j$ f5 v- F- N) D9 ?$ `6 g* M) ?. j5 R
5 k$ {$ C8 j/ O0 i/ [6 G
0 P4 q/ n3 j4 s7 @* t3 \' V2 K1 e" v
! F! g4 S1 {- q: O* B) J6 E
. `# D! L/ J$ M' T; B2 F0 z, j& I
% L6 U! F8 F u3 \5 M2 k- m
' W( \$ D% b8 O6 \+ N/ `: ~+ e0 p& g5 g+ W, b j' u
# @1 |8 P* O5 p }: f& U
; w0 v6 H3 A2 C! ?5 E 转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。 |