; D0 f4 A, J m2 c; Y
海洋生物地球化学模型Ocean biogeochemical models,是基于耦合微分方程,描述海洋环流、物理性质、生物地球化学性质及其变化。通过对这些方程进行数值近似,可以在现实的全球或区域空间域中,模拟海洋状态的动态演变,时间跨度从几年到几个世纪。 近日,加拿大 达尔豪斯大学(Dalhousie University)Katja Fennel,Bin Wang等,香港科技大学(广州)Liuqian Yu等,在Nature Reviews Methods Primers上发文,从最简单的营养物-浮游植物-浮游动物-有机碎屑模型,到用于地球系统建模和气候预测的复杂生物地球化学模型,解释了模型构建过程,以及不同模型类型的主要特征、优点和缺点。描述了用于模型-数据比较的常用度量,同时,还讨论了如何通过参数优化或状态估计(数据同化的两种主要方法)从观测中,为模型提供信息。举例说明了,这些模型如何用于各种实际应用,从碳核算、海洋酸化、海洋脱氧和渔业到观测系统设计。同时,通过实际代码示例和公开可用的模型和观测数据集的综合列表,参与生物地球化学建模。还给出了模型归档最佳实践的建议。最后,讨论了模型目前的局限性和预期的未来发展和挑战。& i3 a* Q8 ]$ K; q- A) R
Ocean biogeochemical modelling.海洋生物地球化学模拟。
9 F- s0 G5 u; G/ u3 h" k 9 U) ]% b# a0 q* r
图1:一系列:海洋生物地球化学模型Ocean biogeochemical models,OBMs状态变量和生物地球化学转化。 " S1 h+ n3 i5 }5 o( O) {
' u3 }) M! F9 S4 Q. {7 {9 o5 o' I 图2:在全球和区域模式中,典型水平分辨率和水深测量。
3 I& H' l3 z. I( E6 w 9 `' {0 X- p# E# H h
图3:二维成本函数的表示。 # T% W) o1 F( z+ p
" V1 C t; I- m: D( {* H 图4:使用示例代码,在孪生实验中,应用随机集合卡尔曼 Kalman 滤波器,估计零维(单箱)营养盐-浮游植物-浮游动物-有机碎屑nutrient–phytoplankton–zooplankton–detritus,NPZD模型的三个参数。
4 n Q: C. @* @! P4 T% ~
" H" ?& A5 A5 P 图5:状态估计与参数优化图解。 9 h; L6 o& c& v( w6 |
9 T" \( o" F& H
图6:利用示例代码,集合基状态估计应用于三维模型中。 文献链接:https://www.nature.com/articles/s43586-022-00154-2DOI: https://doi.org/10.1038/s43586-022-00154-2本文译自Nature。推荐阅读研究前沿:海洋大气环境中的微纳塑料 | Nature Reviews Earth & Environment研究进展:海洋生物的气候风险指数 | Nature Climate ChangeProg. Mater. Sci.综述:仿生海洋防污涂层现状和未来2 X, G2 i8 w+ H; I' Y3 Q
% V, {: E( I/ R0 x) A
' M" C S7 [( ^5 l
|