7 U! F8 @- b7 _2 L" d, U
撰文:香农·霍尔(Shannon Hall) 来源:中国数字科技馆
2 ?' d, X5 \! }
3 v9 ` H0 ]! G1 n, m; @ 沿光纤(图中发亮的线)传输的光可用于测量微小的震动。
- w! M. [7 ^) @8 v( z# P- d5 S 塞莱斯特·拉贝兹(Celeste Labedz)听到了一声巨响,就好像是从冰层里传来的滚滚雷声。地震发生时她正在美国阿拉斯加的塔库冰川(Taku Glacier),这里被积雪覆盖,四周都是耸立的高山。 . ?( R. Q; a* `
此次地震是由冰川突然运动引发的。她赶紧在笔记本上记下了时间。拉贝兹是加州理工学院的一名研究生,她正在铺设一套光缆,今后可用于研究地震——这是一种很有潜力的新方法,正在深刻地改变地质学及其相关领域。
- b2 q6 h4 [3 n$ }! {* E. H 当信息以脉冲光的形式在光缆中传输时,大部分光都会很安分地沿着比头发丝还细的光纤前进。不过,如果光纤中存在缺陷,部分光线会在被散射后向光源方向折回。 ! N5 m' M6 }4 S" x
当光缆因为地震、卡车经过引发震动等因素被拉伸或弯曲时,散射也会表现出不同的特征。因此,科学家可以通过检测散射光的强度变化,量化震动的强度。这种技术被称作分布式声波传感(distributed acoustic sensing,简称DAS),在十多年前由石油行业率先研发。 8 W& M: Q: U4 w
目前,这项技术也开始应用于学术研究。美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)的地球物理学家乔纳森·阿霍富兰克林(Jonathan Ajo-Franklin)表示,“过去几年,DAS技术越来越流行”。 0 j8 k$ V' u; A; D* O3 \7 U: \0 A
2019年12月,有很多使用过这项技术的科学家参与了美国地球物理学会(American Geophysical Union)举办的一场研讨会,他们用这项技术测绘冰川,检测雷暴,研究深海。 ; p K0 S( p. N% A8 J& q9 o2 W8 N2 S
DAS技术的第一个优势在于,用这项技术铺设的光缆可长达数千米,每条光缆都相当于由数千个传感器组成的网络,能记录周围数米内的数据。与之相对,传统的地震仪只能以单点的形式记录地表移动(在测绘地球内部时,这也是非常棘手的主要问题之一)。比如,1980年,圣海伦火山在猛烈喷发前就不停地发出轰鸣声。由于附近只有一台地震仪,科学家甚至无法确定当时的震动是不是由逐渐苏醒的火山引发的。
V. v: @ O! @( |! T “这就好比街上的路灯,”劳伦斯伯克利国家实验室地球和行星科学方向的研究生纳撒尼尔·林赛(Nathaniel Lindsey)说,“如果路灯数量不足,就无法照亮整座火山。”
$ e2 p0 M* a# M( A( X" }6 h 这套技术的第二个优势在于,它已经遍布全球。尽管在塔库冰川之类的地区需要铺设新的光缆,但是,城市、海底等大部分地区都已经铺上光缆了。一部分光缆目前还未启用,部分改造后即可使用。
1 ~( ]- g# i( I/ B @' f" Z: p7 M1 g& }" G 这一切都要归功于20世纪90年代互联网的蓬勃发展。当时,通信公司铺设了大量光缆,其中还没用上的那部分被称作暗光缆。于是,科学家只需在这些光缆的一端连上“询问器”(interrogator,会朝光缆的另一端发出一束激光,并检测散射后的光强变化),一个新的地震波检测网络就搭建好了。
, }, A$ d) \- C9 { 朱铁源(Tieyuan Zhu)是美国宾夕法尼亚州立大学的地球物理学家,去年他改装了学校现有的光纤网络,试图测定校园地面下的微弱震动。在一个雷雨交加的夜晚,他惊喜地在数据中发现了多处波动。尽管在很早之前科学家就已经知道,当空中发出巨响时,气体分子的震动也会引起地表震动,但是没人知道这项新技术是否能检测到这样的“雷震”。
, [7 i4 U3 B7 H7 ^5 } 当朱铁源把自己的监测结果与NASA的数据同步后,他们获得了非常明确的答案,“雷震”确实可以被监测。朱铁源说:“我认为,这项技术拥有让城市获得全方位预警的巨大潜力。它不仅可以监测地震,还可以监测山体滑坡、海啸等地质灾害,以及天气变化。”
* L7 X7 C; Q4 K2 C8 w' _ 还有科学家在更偏远的地方测试这套系统。2019年11月,林赛以第一作者的身份在《科学》(Science)杂志发表了一篇论文。研究者将一台询问机连在了一条20千米长的光缆上。这条光缆连接着蒙特雷湾(Monterey Bay)外海床上的科研仪器,原本是用来传输仪器数据的。当时这些设施正处于维护状态,因此科学家恰好有机会使用这些光缆检测沿途的震动。
8 c! x' l! R. S) {& h* E0 E0 H$ n 他们仅用了4天就绘制出了多处水下断裂带,还检测到了由海浪引发的海床震动。对海床进行更详细的测绘,有助于科学家更好地预测地震和海底火山——这些现象都有可能引发致命的海啸。
; N2 w% q! \( z. D 在塔库冰川,拉贝兹和同事用一条光缆改造出了3000个地震传感器。早期结果表明,这套系统连续运行5小时,检测到了100次冰震,其中大多数很可能是融水胀破冰川中的裂缝造成的。 0 N6 y5 _4 r3 S. F
詹中文(Zhongwen Zhan)是拉贝兹的导师,也是加州理工学院的地震学家。他希望,有朝一日能在格陵兰岛或南极铺设永久光缆,帮助研究人员收集相关信息,更好地理解气候变化引发的冰川融化对海平面上升造成的影响。
: M3 O- o8 C# `$ c3 r4 d1 f 不仅如此,詹中文还想利用近1000千米的暗光缆,在加利福利亚州搭建相当于上百万个传感器的监测网络。在帕萨迪纳市(Pasadena),他已经将37千米的暗光缆改造成了永久性的地震监测网络。此后,他还打算在加利福利亚州的其他城市开展同样的工作。
6 i) Z5 ~7 A9 t# W- q- u3 T 这套网络收集的数据可以反映城市基础设施的牢固程度,并且在地震开始时立即向市民发出警报。目前,科学家还无法预测地震,但是,能够更深入认识那些可能会引发大地震的前兆地震,也是非常有价值的。
, s- \2 `0 O8 n; }: f1 s 罗伯特·梅勒斯(Robert Mellors,未参与这项研究)是美国劳伦斯利弗莫尔国家实验室的地震学家,他表示:“任何有助于准确理解地震启动和形成的数据,都有可能彻底改变地震预测的现状。”
$ Q, s, i, g+ D% x/ Y. f5 a; H 值得注意的是,这种方法会收集到海量的数据。一条光缆一天就能产生10 TB的数据,也就是说,只需100天就会增加到1 PB。然而,负责收集全世界所有地震数据的国际地震数据库,容量也不到1 PB。
3 r4 X4 z5 x3 b& H# F0 `0 ~ 在科学家把光缆铺设到更遥远的地区前,他们或许得先找个合适的解决方案,以此存储和分享这么庞大的数据量。 7 ]+ l/ X3 }4 l: w) U- l: g
* \0 I' q, K4 E( |* F9 W5 {9 ^& N3 W. K* v8 `4 L; s" h( N
. ~+ g9 }% r# T8 y7 e( s% F/ [ Z' J. j
|