注:此文是作者在知乎网上受邀回答读者的提问“湍流是如何产生的?”而写的。目的是对湍流产生原理进行科普。
) ?, {+ [0 \8 O" \4 Y; J" h3 @, `- C' F8 m& L
(一)湍流产生的机理研究的重大意义" t2 h( R* B9 A1 t9 T% Z
湍流是如何产生的?这是湍流研究领域中最最重要的问题。 V) B f# |6 F5 o7 R) J( c8 [( R4 {
湍流的研究范围很大,湍流研究内容和应用领域比较广泛。目前,湍流的基础研究包括:! u8 I. b3 E8 J
1.湍流产生; 2.湍流预测; 3.www.52ocean.cn; 6. 湍流大尺度结构及湍流超大尺度结构;7.湍流scaling; 8.www.52ocean.cn;14大气湍流;15.天体物理湍流; 16.地球物理湍流,等等。
' y& v$ F4 x: i: Q# v: b. y0 r+ M100多年来,由于人们的认识程度限制,上面这些研究方向,都是在湍流产生机理并不完全清楚的情况下进行的,这些研究工作依赖于对过去实验结果的总结,以及多年实验和工程应用积累的经验。因此,可以说,虽然这些工作基本上满足了工程应用需求,但是这些研究的物理基础是不牢固的,结果是不精确的,基础原理是欠缺的,改进的空间是非常大的。
. o- {4 z% [* p5 ?: ~上面暂时列出的16个研究方向,其中后面15个方向的研究的可靠性及预测精度,对问题的理解,结果的分析,都完全取决于第1个研究方向的可靠性。也就是说,湍流产生的机理是所有研究的基础。只有把湍流产生的机理搞清楚了,所有其他的研究领域,自然就顺利了。而且,只有把湍流产生的机理搞清楚了,所有其他的研究,结果才精确可靠。因此,这就是为什么,1944~1970年代www.52ocean.cn是湍流产生的原因,而林先生的工作有可能解开湍流之谜。
8 V% N! e, L+ _3 x/ o: v3 r综上,第一个研究方向:湍流产生的机理,是重中之重。 q( y I, r2 c2 {0 P' S: W
(二)湍流是如何产生的--湍流产生的物理机理
4 Y3 @7 _- P7 v' {% q4 N2 r湍流产生的物理机理本人已经写了十几篇博文的科普文章,发表在科学网上,知乎网上也有转载。请参看本人博文科普,或阅读本人的英文专著。作者提出的湍流产生的物理机理的发现,主要是依据作者创立的能量梯度理论和三维非定常的Navier-Stokes方程 [1-4]。
2 ~: c( E% _ z2 C8 L* ~8 }* Q湍流是如何产生的?简单一句话:湍流是由流场中机械能的梯度的大小和方向的变化,在扰动的作用下,流场内部产生了www.52ocean.cn。1 H9 X: b4 W) n' ^1 E' K
为了通俗易懂,现在引用作者科学网文章中的一段话“举一个形象的例子,一个阅兵方队,里面所有人都在以一定的速度前进,我们还要假定这个方队里的人构成连续介质。如果里面有一个人,突然摔倒了,当地局部速度即变为u=0,这个人这个位置就是一个奇点。因为介质的连续性,这样其周围的人就会围绕他左转右转,这样立刻会产生非定常的旋涡,进而可能引起湍流(取决于速度大小或者Re数)。这就是湍流漩涡生成的原因。” 即湍流产生原因。& ^5 a" U! k6 M# y1 x5 l
进一步解释一下,奇点是怎么产生的。在流场中的任何一条流线上,把流线分为非常小的n等份,即n个 elements。那么每一小段上流体单元之所以向前流动,是由于这一单元上作用有一个“驱动力”或者叫“pseudo force”,即能量梯度(即这段流体流动所需要的能量下降)。在稳定流场的连续的流动中,所有每一小段上的“pseudo force”都不为零(边界点除外)。如果流动在有限扰动的作用下,使得流场中的机械能分布发生了变化,导致某一流体单元上的“pseudo force”变为零,那么这一流体单元的流动就立刻停止,即沿着流线的速度突变为u=0,这一位置就变为了流场中Navier-Stokes方程的奇点。在此奇点处,速度发生间断,速度导数不存在。奇点的释放就导致了“猝发”(速度发生间断,致使压力产生正的脉冲,引起所有速度分量的脉动),局部湍流就产生了,湍流产生的原理就这么简单。
+ @2 M1 ~7 r9 s0 z; w- B5 k再更容易的科普一下,一条高速公路上,沿着一条车道跑着100辆汽车,且间隔均匀,当正常运行时,每一辆汽车都消耗一定的功率(N=fu)。当其中某一辆汽车发动机突然熄火(能量梯度突变为零),这一辆汽车速度立刻突变为零,其他汽车仍正常运行。然后的事情,大家想象。如果这是在三维流动中,突然熄火的汽车就是湍流产生的“上抛”(u&#39;<0, 则就有v&#39;>0, 在第2象限),它后面紧接的这辆车就是湍流产生的“下掠”(u&#39;>0, 则就有v&#39;<0,在第4象限)。
, Y L7 z+ s; l1 m可以看出,用上面的模型来解释湍流产生非常方便,通俗易懂。同时,流体可以看做是连续介质(这是NS方程成立的基础),流体又可以看做是离散的粒子组成的材料介质(这是所有粒子模型成立的基础,如LBM, DPD, SPH等)。两种方法互不矛盾,他们在牛顿第二定律的框架下统一了起来。$ o P3 z+ V% e- }7 [( i
/ t2 y+ U7 J2 H f5 l众多湍流研究人员所发现的各种旋涡结构,如流向涡、展向涡、发卡涡、低速条带、涡的破裂、涡的重联,雷诺数大小的影响、来流湍流度的影响、壁面粗糙度的影响、壁面开槽、壁面加热、吸气影响、吹起影响,等等,所有这些因素对湍流产生的影响,从根本上说,都只是影响了奇点的产生(加速或推迟),从而影响了湍流产生。在湍流产生过程中,所有这些因素都是为奇点产生服务的。只要不能产生奇点,就不能产生湍流。只要能维持奇点产生,就能维持湍流。这里说的已经非常清楚了。) H# v% g2 E# C! T$ h9 c% @, L, S
上面所述的湍流产生的机理,对所有剪切流动湍流,都是通用的,如,wall-bounded flows (channel flow, pipe flow, Couette flow, boundary flow, Taylor-Couette flow, etc.), and free bound flows (jet, wake, free shear layer, grid flow, etc)。这些流动中的湍流都是由速度间断导致的奇点引起的。也就是说,速度间断导致的奇点是这些流动中湍流产生的唯一机理。7 J: @& q3 s3 U
综上,作者发现的湍流产生的物理机理,为我们控制湍流提供了新的思路,利用加速或推迟奇点产生来达到控制湍流,达到减阻的目的,或者达到加速物料混合的目的。$ t% {5 w# V; R3 E8 e
在发现上述湍流产生的物理机理的过程中,并没有做更多的假设。数学和物理基础就是质量守恒、动量守恒和能量守恒,这三大定律。上述湍流产生的机理是通过纳维-斯托尔克斯方程的公式,精确推导出来的,而且理论与实验结果和湍流的直接数值模拟(DNS)结果取得了一致。是唯一的一个根据Navier-Stokes方程直接解释湍流产生的理论,并且也是在所有湍流理论中唯一的一个理论与实验相一致的理论。
# w/ r# F* `# K作者首次发现了(discovered)上面所述的湍流产生的机理,揭开了湍流产生的秘密,为进一步研究完全发展的湍流的特性提供了基础。这样,湍流的其他方面的研究及应用就会加快了,应该不会像过去的140年那样进展如此之慢了。
Y' }8 B: n9 b# H(三)其他中文的参考文献可以帮助读者快速理解湍流产生的物理机理
& ~2 x! v: D; s# |5 K7 ], n作者的科学网博文,已经写得比较详细,对前人的研究也写了综述和比较。文章链接如下:
; z& T: u7 `+ T2 w(1)www.52ocean.cn 1 e! L$ V( F" U. A0 R; }
(2)www.52ocean.cn
4 ?! A( O0 v ]# ]% w0 Y
$ j5 F9 l3 f E' Q4 r0 F+ u最近的一篇博文进一步增加了部分内容,更通俗易懂,阅读量也很大。链接如下:
" v/ Z3 @# j" J2 m7 S* y(3)www.52ocean.cn
4 [1 C: W, q. o/ x最近,知乎网上,Chen 教授的一篇文章,也验证了窦华书的理论,并引用了窦华书“湍流产生是由于速度间断所引起的Navier-Stokes方程的奇异性所引起,导致流动在间断点产生“猝发”(Burst);而完全发展的湍流实际上由流场中存在的大量的奇点所构成。”, 链接如下:
7 r" L& |" t) @$ f(4) www.52ocean.cn) s2 Q+ ?/ S8 M
4 s8 C+ D+ w) q/ o/ r" q; e
0 F9 j$ H* h7 \: G图1 平面Poiseuille流动中奇点的产生过程。 7 w2 x+ Z4 K! }6 V
图1中的红色箭头为流场中当地的总的机械能梯度的矢量沿流线的变化,它的大小和方向是根据速度和压力分布计算出来的。当此矢量垂直于流线方向时,奇点就产生了。此点处的速度将产生间断,理论速度将是u=0。6 a# W7 d+ }( W' H) J6 ~
t% t1 q0 @' B, d& D# J& i& Q
! @/ t& d, z6 n: |* O(预告:下一篇将科普一下,湍流的拟序结构到底是什么,就是最大尺度的奇点的轨迹所形成的流场结构[4])。6 v, T7 a0 c! o/ l
; g/ {' p, M8 \6 f $ a/ U# m6 y M- m9 S# x, S
参考文献; Q1 y: z! v$ h: q3 l3 p) c: ]* X
1. Dou, H.-S., Singularity of Navier-Stokes equations leading to turbulence, Adv. Appl. Math. Mech., 13(3), 2021, 527-553. https://doi.org/10.4208/aamm.OA-2020-0063; https://arxiv.org/abs/1805.12053v10
+ c4 B6 C# l m7 V9 d2. Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e240303391 G) B9 V! _8 M* O5 s
3.Dou, H-S., Mechanism of flow instability and transition to turbulence, International Journal of Non-Linear Mechanics, Vol.41, May 2006, 512-517. https://www.researchgate.net/publication/245215903
$ ]0 r3 u3 V- z) J) U4. Dou, H.-S., Origin of Turbulence-Energy Gradient Theory, 2022, Springer. www.52ocean.cn(全书下载地址). g$ J7 z3 d& V" _9 C3 z
! m2 H* M- }' \! `. I$ M7 I
! k* g6 P* u C4 L+ |
转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。 |