& d$ S- ]1 y9 B7 I( M8 _2 j最后的电子光学组件(DOMs)被放入组成冰立方阵列的一个冰洞里,冰立方是全球最大的中微子望远镜,它建在美国阿蒙森·史考特南极站附近的南极冻原下。 ' c' a* ~: y, N* ^1 e0 I6 I
" Q5 w" E0 n6 \0 f5 O1 Z& w1 u O3 s
7 Q' J. ^; R& Z- V; M
冰立方阵列由放进很深的冰洞里的众多传感器串组成。靠近冰面的IceTop由两层探测器组成。图的右下角绘制的巴黎埃菲尔铁塔的图像,是用来与这个探测器进行对比,让它的大小更加一目了然。 6 a1 }% j9 s( j
% W% X! E* ~# K8 I$ C* C# r
+ g5 w: F) ~3 R9 \' q
l' W( J* l& q$ n斯德哥尔摩大学的马提亚斯·丹宁格尔正在协助安装最后的电子光学组件 / I+ E- {4 @0 h8 A t/ Y
0 T; H, v- S3 R3 F7 Z8 w+ @
- |4 l+ T% e! A* y; N 8 h+ n% t3 Z! _& J g
冰立方中微子天文台的建设工作已经完成 7 {: i0 d! ^+ r y# Y, p
- Q' k. i7 u/ W2 u! R
5 Q. v8 r% n3 j [! { 12月27日,在南极洲8000英尺(2.44公里)深的冰层下,巨型望远镜——冰立方中微子望远镜的建设工作已经完成。/ ^/ L/ V9 ~5 X. L; i
冰立方中微子天文台是建在南极的一个巨型望远镜,它的目的是发现以光速穿过地球的中微子,这是一种令人难以捉摸的亚原子粒子。尽管科学家利用冰立方收集数据的时间已经长达数年,但是它的建设工作直到上周末才结束。人们对中微子知之甚少,但是认为它们携带着有关我们的星系和神秘黑洞诞生的信息。
. E# T% c$ F, {8 g- s0 {4 ^ 物理学家认为,中微子在猛烈的宇宙事件中诞生,例如位于宇宙边缘的遥远星系相撞或黑洞的产物。这些神秘的高能粒子能在太空里穿行几十亿光年,而不会被磁场和原子吸收或偏转运行方向。通过它们,科学家能找到一些有关宇宙最基本问题的答案。不过要实现这个目的,首先你要发现中微子。为此,科学家正在利用冰观测中微子撞击(组成水冰分子的)原子的罕见场面。
+ N2 |7 d" r+ Y; c2 ~ Z3 b 这个巨大的望远镜建在南极深达8000英尺(2.44公里)的冰原下。整个项目耗资2.79亿美元,美国国家科学基金会为其提供了2.42亿美元资助。建设工作的最后阶段是为5160个光学传感器钻86个孔,现在这些传感器已经安装完毕,成为主探测器的组成部分。中微子与原子相撞产生的粒子名叫μ介子,生成的蓝色光束被称作“切伦科夫辐射”。由于南极冰的透明度极高,冰立方的光学传感器能发现这种蓝光。0 a' y) E8 H3 c# H$ y1 W
[NextPage]- @+ _' ?* S1 w" _/ }
5 y6 J2 ~2 F- |( a2 m2 c6 N
L6 o9 ~3 U8 X" l, G% B& q* ` \
人们准备安装最后的电子光学组件,它上面有全队所有成员的签名。
7 Z& Z# G9 j3 t4 W" X, }! D
* m: V, S# G" e1 K! b; \) M6 r" b# O5 N$ m# H( G
1 u! G& z# }( B: q
这是一束“切伦科夫光束”穿过冰立方望远镜的艺术概念图
5 e) @& o$ `9 i* b+ f8 h; B
+ b% A5 k6 C: o t7 p1 X% H+ B, \$ y
7 u x s4 D7 Y9 t
冰立方将会把南极μ介子及中微子探测器列阵(黄色圆柱体)团团围住,后者是一个更小的中微子探测器。彩色斑点显示的是通过冰立方阵列的中微子的路径,这是由电子光学组件发现的。 : n8 t+ n; c5 u8 [
# F! N& Q3 y3 F5 v/ ]
9 }: t# X$ z; |) ^
/ b; h% h1 a5 y( r, L3 @; l+ _ 美国阿蒙森·史考特南极站附近的南极冻原上的冰立方实验室。过去5年科学家一直在建这个望远镜,直到最近它才竣工 # K9 B- F) Y2 X0 f5 K- {3 s
9 A' W o( H) S7 h" ?" O
4 u( t& O: ]! b1 l% s4 S 科学家通过在亚原子相撞后进行的试验,可以追踪到中微子的运行方向、查找到它的起源,看一看它是由黑洞还是由撞击星系产生的。然而,这一过程比探测μ介子更加复杂。因为每个μ介子都是由一个宇宙中微子产生,而位于探测器上方大气里的宇宙射线可以生成一百多万个中微子。为了避免这种干扰,冰立方的传感器直接瞄准下方——经地心指向北极天空,用来探测穿过地球的中微子。
; N: A4 @" w' k* l; T K 由于中微子是目前已知的唯一一种可以畅通无阻地穿过物质的粒子,故冰立方和南极μ介子及中微子探测器列阵(AMANDA)把地球当做过滤器,以便选出中微子与原子相撞产生的μ介子。令人捉摸不透的中微子的性质,还决定了冰立方的建设位置。中微子望远镜的透明度必须很高,以便分布很广的传感器阵列可以发现撞击产生的光,而且这个环境必须足够黑,以防自然光产生干扰。除此以外,它还必须深埋地下,以避免南半球的宇宙射线对其产生干扰。南极冰符合所有这些条件。
5 T. Y: F) x3 l' |5 j 天文台的大小(边长一公里的立方体冰块)非常重要,因为这可增加中微子与原子相撞的机会,大大提高观测成功率。另外,南极冰是用来观测这种罕见事件的完美选择。全球大部分冰里都含有气泡或其他杂质,这会使观察结果产生误差。而南极冰基本上完全是由水冰组成的巨大冰川,这意味着它包含更多原子,因此会大大增加中微子撞击的机会。圆形探测器被串成串,放入用热水钻开凿出来的冰洞里,钻每个冰洞需要融冰多达20万加仑。每根电缆线上有60个传感器,86串这样的传感器串组成冰立方的主探测器。 |