当今世界上充满着合作与竞争,而海洋的竞争实际上是高技术的竞争。我国既是陆地大国,也是海洋大国,拥有广泛的海洋战略利益。 海洋是人类的摇篮,地球表面的 70% 以上被海洋所覆盖。我国是名副其实的海洋大国,拥有 18 000 公里的大陆海岸线,6 500 个面积超过 500 平方米的岛屿,300 万平方公里的管辖海域。沿海居住人口占全国人口的 40%,沿海国内生产总值(GDP)占全国的 60% 以上。 党的十八大已经把建设海洋强国确立为国家战略。习近平总书记指出,“要进一步关心海洋,认识海洋,经略海洋,推动我国海洋强国建设不断取得新成就。” 西方一些政治家和学者认为,谁控制了海洋,谁就控制了世界。这方面最著名的是 19 世纪末美国军事家马汉提出的所谓“海权理论”,他在《海权论》一书中指出:“海权是指凭借海洋或通过海洋能够使一个民族成为伟大民族的一切东西。”
马汉的“海权理论”一直被西方战略家奉为经典,美国图书馆协会主席唐斯在其《改变世界的书》中,将《海权论》列为与马克思《共产党宣言》、马尔萨斯《人口论》、达尔文《物种起源》、爱因斯坦《相对论》等一样的影响世界历史进程的 16 部巨著之一。 声呐的起源 水声是人类迄今为止所知道的唯一能在海洋里远距离传播的能量形式。其他的物理媒介,如可见光、电磁波、激光等在海水中传播时会很快地衰减掉,因而无法传向远方。 声呐(sonar)一词源于第二次世界大战期间,由声音(sound)、导航(navigation)和测距(ranging)3 个英文单词构成。今天,声呐的定义是:“利用水下声波判断海洋中物体的存在、位置及类型的方法和设备”。 声呐的发展如果从 1490 年意大利人达 · 芬奇发现声管算起,至今已有 500 多年的历史了。达 · 芬奇描述的“如果你停下船,把一根长管的一端放入水中,把露出水面的一端放在耳朵边,将听到离你很远的船的声音”,实际上就是现代被动声呐的雏形。 1912 年,当时世界上体积最庞大的客运邮轮泰坦尼克号在首航时撞上冰山沉没。这起沉船悲剧,促使一些公司开始研发能预警冰山和航行中其他危险的设备。
泰坦尼克号沉没(图片来源于网络) 1914 年,第一个有实用意义的回声测距仪由美国波士顿水下信号公司的费森登研发成功并在美国申请了专利,这是一个能发出低频声音信号,然后切换到测听状态接收回声信号的电子振荡器。利用这个装置能够探测到 3 公里以外的冰山,但仍无法精准确定冰山所处的方位。 1918 年,法国著名科学家朗之万研制成压电式换能器产生了超声波,并应用当时刚出现的真空管放大技术进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。不过这种声呐尚未在战争中发挥作用,第一次世界大战就结束了。第二次世界大战前,一些国家的舰艇已经装备了用电子管放大器制作的声呐。
朗之万,法国物理学家 第二次世界大战中,由于战争的需要,各国都投入了较大的力量进行水声研究并发展声呐技术,促使声呐在探测目标时从机械旋转的步距式发展到电子扫描式。同时,还研制出了声制导鱼雷和音响水雷。 冷战结束后,由于可在水下长期潜航的低噪声、安静型核潜艇的出现,世界海洋强国都投入了巨大的人力、物力、财力开展水下攻防和信息战的研究。声呐技术成为优先发展并取得许多突破性进展的领域,并在国家安全和国民经济的诸多领域发挥重要作用。 我国水声学发展起源 水声信号处理和声呐技术是一门发展迅速、需求推动力强大、应用前景异常广阔的学科。在声学领域的众多分支学科中,没有其他学科像水声学那样,其发展受着战争需求的推动。反过来,水声学的发展又为水下战武器装备的研制和创新注入活力。 20 世纪 60 年代以来,由于潜艇的被动和主动隐身需求,潜艇螺旋桨降噪技术和大推力、低转速螺旋桨技术,以及覆盖潜艇表面的消声瓦的研制受到空前重视。而低噪声、安静型潜艇的出现又催生了用于目标探测和识别的低频、大孔径拖线阵声呐的研制和低频大功率发射基阵的使用,同时又在海洋领域推动了对低频水声信道特性的研究。强劲的需求成为声呐新技术迅速发展的重要原因。 水声学不是一门纯理论的学科,其发展和完善依赖于大量有准备的实验测试。理论推导的结果和对声呐设备性能的预估,需要经过一系列实验室、湖上和海上试验的反复验证。由于水声学研究的特殊性,需要较大的人力、财力投入。深入的基础研究是声呐技术创新的源泉,回顾声呐发展的历史就可以证明这一点。 我国国防水声学的研究工作开始于 1956 年,当时,时任法国国家原子能委员会顾问的著名科学家汪德昭(1957年当选中国科学院学部委员)回国。二战时,汪德昭曾在著名水声学专家朗之万的实验室从事水声学研究。回国后,汪德昭和著名声学专家马大猷(1955年当选中国科学院学部委员)、应崇福(1993 年当选为中国科学院院士)一道参与了中国科学院电子学研究所(以下简称“电子所”)的筹建工作,并在电子所内设立水声、超声、电声研究室,系统全面地开始了我国的声学研究。
汪德昭于 1957 年赴苏联考察水声研究,1958 年率队参加中苏联合水声考察,并筹建了中国科学院南海、东海、北海工作站,为我国国防水声学的研究奠定了坚实的基础。 汪德昭根据我国当时的条件,提出“由浅入深,由近及远”的我国水声事业发展战略方针,并带领年轻的科技工作者独立自主地开展水声物理学、水声工程学的研究。这一系列举措,使我国在浅海水声传播、混响、海洋环境噪声、数字式声呐设计等领域取得一批具有重大理论和实际意义的创新成果,“使我国在‘国际声学大合唱’中占有一席之地”。 声呐在水声成像和水声通信中的重要作用
我国自主研制的主动合成孔径声呐的海试所获得的图像,其分辨力处于世界先进水平 水声通信是水声信号处理的一个重要应用,最近 15 年来又与网络中心战的理论和实践紧紧地联系在一起。美国国防供应商雷神公司研制的“深海传呼机”(Deep Siren)设备,可将卫星信号转化成声学信号传递给海底的潜艇,但这种传递只能是单向的,用于建立海军指挥机关和远航潜艇之间的通信。在过去,美国海军必须通过长波无线电台在约定时间与潜艇进行通信,但是有了“深海传呼机”,利用卫星—无线传输—水声通信潜标,海军指挥员可以随时与远航潜艇进行通话,由此可见水声通信的重要性。 网络中心战是由美国国防部所提倡的新军事指导原则,以期将资讯优势化为战争优势,目前该原则不局限于美国海军,已扩大至美军各个军种。
Deep Siren(图片来源于网络) 如今,深海高技术发展中的水声学问题受到越来越广泛的关注。我国独立自主研制成功的“蛟龙”号 7 000 米载人潜器,于 2012 年 6 月 30 日在马里亚纳海沟创造了下潜 7 062米 的中国载人深潜纪录,也是世界同类作业型潜水器最大下潜深度纪录。
“蛟龙”号潜器安装了多部不同功能的声呐,包括导航、水声通信、图像信号传输、测速和前视声呐,它所使用的独特的单边带、高保真度实时语音通讯声呐,在历次下潜中发挥了重要作用。 深海水声学 深海海域约占世界海洋总面积的 88%,蕴藏着丰富的油气资源、矿产资源和生物基因资源。近年来,海洋竞争,尤其是深海领域的竞争日趋激烈。随着我国综合国力的不断提升,面对国际深海领域的激烈竞争,突破“第二岛链”、走向深海已成为我国面对全球化发展的必然选择,发展深海高技术是实现我国参与国际深海竞争的关键。 2009 年 7 月 3 日科技部、国家海洋局发布了《国家深海高技术发展专项规划(2009—2020 年)》。水声学在深海高技术发展中具有独特的作用:① 信号处理算法和计算能力是实现高性能声呐的必备条件,但海洋声信号的相干性则是最终确定声呐性能的关键。② 深海传播条件受海面、海底影响较小,具有特殊的会聚区效应。充分利用深海的传播特性,对水下噪声检测、水声通信,大面积的水下观测网络意义重大。③ 各种水声设备要在深海环境下有效工作,必须克服由深海压力、海流、低温等各种条件所带来的不利影响。无论是载人还是无人系统都要有不同于浅海环境的受压、生活、动力、观测、导航、通信、自救的能力。要研制一系列可以在深海使用的数据采集/传输设备、环境监测的传感器、深海声发射换能器等。 北极水声学 北极地区是全球气候变化最为剧烈的地区之一,随着海水变暖造成的北极冰盖融化,北极的战略地位日益突出,也使其成为美、俄等大国博弈的焦点。同样,作为近北极国家的中国在北极地区也存在航道、资源、军事以及科研等维系国家未来发展空间的重大利益。建设海洋强国,理应将经略北极纳入战略视野。 北极水声学即对北冰洋地区及其毗邻海域的海洋声学、水声学的研究工作,实际上高纬度地区的水声学研究都可以看作是极地声学的一部分。北极地区地理位置独特、气候寒冷,北冰洋的大部分区域终年被海冰覆盖,因此也形成了独特的声场环境。由于冰盖的作用,造成冰下噪声剧烈起伏以及强混响效应,并形成了北冰洋独有的半波导声道。
因此,如何收集水声数据资料,掌握北极地区海域水声环境规律及机理,建立北极背景场、声信道模型,利用北极海洋环境水声效应,开展北极水声环境适配处理理论与方法研究,是确保我国海军在未来的北极机动作战中获取信息优势的重大能力需求,是我国潜艇隐蔽实施核威慑,保障舰艇北极地区航行安全,以及提高舰艇声呐装备环境适应性,提升探测、通信、导航技术水平的重大前沿基础研究需求。 国际合作情况 改革开放以来,我国在水声领域与国外同行(主要是美国和西欧)进行了有限度的合作。我国声学专家尚尔昌研究员、周纪浔教授等在其国内工作的基础上,在美国访问期间继续他们出色的工作,并且在美国水声学界产生了一定的影响。 例如,周纪浔有关内波孤立子的理论/实践工作,被 Goodman列入水声学自诞生起近 500 年(1490—2000 年)中具有里程碑意义的 60 件大事之一,这也是中国大陆学者唯一被列入的工作。 我国研究人员曾与美国同行在黄海和东海、南海进行过几次较大规模的联合海试。1996 年中、美两国科学家在黄海进行了联合海试,但规模较小。最大一次联合海试是 2001 年 5—6 月,以中国、美国科学家为主,并有韩国、新加坡以及中国台湾地区科学家参加的亚洲海联合海试ASIAEX。这次海试中,科学家们在东中国海和南中国海进行了水声传播、散射、混响、海底地质反演的试验,历时近 2 个月,在长线阵声时空相干特性、不同主动声呐信号的混响特性、目标辐射噪声分布等方面取得了丰硕的成果。 我国学者还积极参加水声学领域的各种国际会议,向国外同行介绍我国在该领域所取得的成就。包括国际理论计算声学会议(ICTCA)、水下防务技术会议(UDT)、海洋科学和技术(MAST)、水下声学测量(UAM)、泛太平洋水声会议(PRUAC)、西太平洋声学会议(WESPAC)等。部分成果如高分辨力合成孔径声呐、浅海波导、数据融合等,也都在会议的特邀报告和专题报告中得以展示。 声波在海洋中水平传播时,速度受温度的影响很大,因此在测定海水温度时,声波的传播时间是一个灵敏的指示器。全球海温图便是将海洋中数以千计的声波传播路径信息综合起来,在不同时间沿着同一路径重复测量,以使科学家找到海水温度的月际或年际变化规律。1992 年,包括中国在内的 13 个国家实施了海洋气候声学测温(ATOC)计划,其主要目的是在太平洋建立海温基线,以此为基础来测量温度的变化。我国在台湾岛以东海域投放了 2 个浮标,用于接收美国在夏威夷附近发射的 57 Hz 的声信号。 国内合作情况 我国“863”计划于 1996 年增列了海洋领域。其中海洋监测主题开展了一系列创新研究,对推动我国海洋监测技术赶超世界先进水平起到了重要作用。 在国家层面建立了 3 个海洋环境立体监测示范区:由上海市政府、国家海洋局共同参与建设的“海洋环境立体监测系统技术上海示范区”,由香港科技大学和中山大学联合承担的“珠江口海洋环境联合监测中心”,由科技部和福建省政府联合投资建设的“台湾海峡及其毗邻海域海洋环境动力参数立体监测系统”。 这些系统的业务化运行为我国近海海洋动力参数的实时监测和应用发挥了重要作用,也为后续全国范围的海洋监测系统的建设提供了经验和技术储备。在执行海洋“863”计划的过程中研制了多款海洋水体测量、海洋遥感遥测、水声测量设备,如高频地波雷达、合成孔径声呐(SAS)、声学多普勒海流剖面仪(ADCP)、声学相关海流剖面仪(ACCP)、多功能CTD(温盐深)、强风计、光学遥感无人机等。 2013 年我国成为北极理事会正式观察员国;2018 年国务院新闻办发布了《中国政府的北极政策》白皮书,明确中国是近北极国家,是北极地区的利益攸关方,愿和有关国家共建“冰上丝绸之路”。我国科技界对北极地区的风云变幻始终非常关注,自 1999 年来已进行了有组织的 9 次科考,取得了一系列成果。对北极地区及其毗邻海域的声学研究,中国科学院重大科技任务局、前沿科学与教育局、国际合作局统筹安排了一系列项目,并与国家海洋局签署了在海洋领域进行全面深入合作的战略合作框架协议。 2017 年 3 月,中国科学院重大科技任务局在北京组织国内涉海的 10 多家单位,举行了“北极科学研究暨北极水声学”专题研讨会。此外,据不完全统计,国家自然科学基金委员会从 1986—2013 年共资助和极地科学有关的基金项目 450 项,并在 2016 年安排了冰下水声传播研究课题。
我国涉海科研单位众多,所从事的领域也各不相同。自 1998 年以来已对北极进行过 9 次科学考察,取得大量的宝贵数据。在国家海洋局极地办公室和极地中心的支持下,2016 年中国科学院声学研究所科考人员第一次搭乘“雪龙”号科考船赴北极进行了声学试验,取得了一批重要数据。2018 年又参与了第 9 次北极科学考察。 当今世界上充满着合作与竞争,而海洋的竞争实际上是高技术的竞争。我国既是陆地大国,也是海洋大国,拥有广泛的海洋战略利益。经过多年发展,我国海洋事业总体上进入了历史上最好的发展时期,海洋也必将成为决定我国经济实力和政治地位的极其重要的因素之一。 当前,围绕邻国间管辖海域划界,领海和专属经济区资源的勘查、开发和管理等各方面、各领域对海洋高技术的需求日趋迫切。历史证明,要保持有效的海上防御能力和对突发事件应急响应能力,必须加快发展海洋监测高技术。 如今海洋监测已进入从空间、沿岸、水面及水下对海洋环境进行立体监测的时代。21 世纪的海洋环境立体监测网不仅包括岸基、平台基的自动监测系统,还包括空中的遥感、遥测信息及海岸基自动监测系统。这些系统要组成网络,必须要进行必要的数据融合才能对所监测的海洋的环境要素作出预报,水声学在其中发挥的作用极为重要。尽管水声学在海洋监测中具有独特的优势,但是也必需和其他非声学的探测手段,如光学、红外、卫星、生物学、化学、电学、磁学、激光等手段相结合,才能获得更好的效果。 声呐技术是一门发展迅速、需求推动力强大、应用前景异常广阔的学科。它不是一门纯理论的学科,其发展和完善依赖于大量的有准备的海上实验。由于基础研究的特殊性,需要较大的人力、财力投入。深入的基础研究是声呐技术创新的源泉,回顾声呐发展的历史就可以证明这一点。 2018 年,习近平总书记在青岛考察时指出,发展海洋科研是推动强国战略的重要方面,关键的技术要靠我们自主来研发,海洋经济的发展前途无量。只有技术创新才能实现跨越式发展。声呐设计者在 21 世纪初处于这样一种充满机遇和挑战的年代中,一定能取得新的突破、新的成功。
! y9 h; {/ e3 _ |