|
7 e$ ], C2 y# R% G$ B
海洋和河流覆盖了大约 70% 的地球表面,它们接收、储存和消散大量的热能。因此,它们充当了巨大的热能储存器。跨越海洋深度的温度梯度可用于发电。它被称为海洋热能转换系统。 由于温差非常低,因此此类工厂
7 z, ?( T [" Z: X& m5 C B$ |% r2 Y Q8 M 的能量转换效率非常低,与高资本成本相关。这些工厂可以无限期地运行,它们的最佳位置是在北纬 20度和南纬20 度的热带地带。
2 z. ?# C. Z6 e [' c 当太阳辐射落在海水上时,大部分太阳热吸收发生在水面以下的表面。大约 95% 的热能发生在 6 m 深度内。 5 E g0 ?+ F9 P+ R: P8 }
由于温水比冷水更轻,因为没有设置对流并且海洋中的深水保持凉爽。 在热带地区,这种跨越海洋深度的温度梯度变得非常显着。此处海水表面的平均温度为 25 o C,在 1000 m 深度处约为 5 o C。因此,该温度梯度可用于运行与发电机
( E U5 x/ b3 X, ^ 耦合的热力发动机以产生电力。 0 ?8 h: c9 H3 s! r
在这个系统中,海水的暖水层充当热源的储存器,而深处的冷水层充当散热器的储存器。 ; g$ m; k! ^. t7 M/ x# c
海洋热能转换 (OTEC) 系统有两种基本类型,如下所示:
1 G7 x% z7 p+ V- Q
. O: d5 T, \: U+ a5 x 开式循环海洋热能转换系统
7 N0 h Z8 W1 H1 T; t. Z 在这个系统7 f/ P4 a; u5 z% Y- K
中,来自海洋表面的温水被送入除氧器。它从水中去除溶解的不凝性气体并将其送入蒸发器。 闪蒸器保持在高真空下。结果,由于节流作用产生低压蒸汽,残液被释放回深海。在下一步中,这种低压蒸汽被送入涡轮机,在那里它膨胀并使涡轮机旋转。如此产生的机械能被发电机7 C1 u! M7 Y5 B
转换成电能。 涡轮机排出的蒸汽被释放到直接接触式热交换器中,在那里它与从海洋深处抽取的冷水混合。它冷凝排出的蒸汽并将混合物排放到海洋中。如果使用表面冷凝器代替直接接触式冷凝器,我们可以得到冷凝水作为淡化水。
7 f0 p' N/ p7 D; V 闭式循环海洋热能转换系统$ b2 L- G8 S+ c- n
在该系统中,由于海水的工作温度较低,因此热机采用氨、氟利昂-12、丁烷气体等低沸点工作流体。封闭式 OTEC 发电厂的示意图如图所示。 , g5 y2 P4 w8 M- n
. k- m- ?% U, J) n" {$ y6 S* \. ` 来自海面的温水在泵的帮助下通过热交换器循环。在热交换器中,海水的热量被氟利昂吸收,并在高压下产生氟利昂蒸气。这种蒸汽在涡轮机中膨胀以驱动它和与之耦合的发电机。来自涡轮机的氟利昂蒸气在冷水的帮助下在冷凝器中冷凝。氟利昂冷凝液再次泵入热交换器并重复整个循环。这种工厂的整体效率非常低,仅在 2% 到 3% 的范围内。 % w! b# E j# v0 r* G2 C$ E9 Y: |( I- e9 X
海洋热能转换的优缺点
& w. ^; O( l- Q; L3 Z 好处: 它是一种清洁、无污染的可再生能源。该系统产生的电力是连续的。不同季节的产量只有很小的变化。简而言之,我们可以说,该系统与天气无关。只需对设计进行微小的改动,就可以在该系统中使用传统的发电厂。它可以同时生产海水淡化水和养分。缺点: 资金成本非常高。系统的整体效率非常低。由于蒸汽压力低,开式循环系统需要非常大尺寸的涡轮机。在闭式循环系统中,工作流体非常昂贵。每千瓦时的发电成本非常高。5 o* ?3 X0 \& C8 \
* |$ _: f6 r8 p7 m( W) ]( _5 C# v
|