{. a; Y7 y, _0 t8 b* }2 X/ D3 w2 i
点击上方“慧天地”关注 文章转载自微信公众号智慧海洋圈子V,本文作者:王军成,孙继昌,刘岩,刘世萱,张颖颖,陈世哲,漆随平,王波,厉运周, 曹煊,高杨,郑良,原文转载自微信公众号 海洋知圈,信息来源:本文节选自《我国海洋监测仪器装备发展分析及展望》原刊于《中国工程科学》2023年第25卷,排版:智慧海洋圈子,版权归原作者及刊载媒体所有。
, w% E2 g0 a1 ?
- h3 J! n# i( b
4 ?4 [/ ]+ l7 T' _6 I5 o. X' s7 q
5 V5 @( f/ _/ N P1 f5 w( v2 t5 K+ Q 海洋浮标专家、中国工程院院士王军成 # ?, F: L5 F. G: c. J
海洋监测仪器装备是关心海洋、认识海洋、经略海洋的基础保障和重要前提,虽然我国海洋监测仪器装备技术水平与业务化应用近年来进步显著,但相比海洋发达国家仍在“卡脖子”技术、关键设备研制方面存在一定差距。本文从全球海洋立体观测网、国家近海业务化观测系统、海洋环境监测探测技术与核心装备3个层面着手,辨识并剖析了我国海洋监测仪器装备的发展需求,梳理了我国海洋监测仪器装备发展现状。
, q; V/ n! ?) e5 V' e" g6 j* h" H8 O 一、我国海洋监测仪器装备发展现状
- P4 q/ ^" v) }; Z" R
# e n6 Y( y, B* R. |; | 01 海洋立体观测体系建设 : c$ M# {- V1 Q
着眼海洋防灾减灾、海洋开发、海洋管控、气候变化研究等需求,建设全球海洋立体观测网,是实现海洋强国的必经之路。 ! A0 e: a0 J4 g& O1 e3 V
“十三五”时期,我国将全球海洋立体观测网列为重大工程,自主发展由HY-1B、HY-1C、HY-1D、HY-2B、HY-2C、HY-2D、中法海洋卫星7个星座组成,覆盖海洋水色、海洋动力、海洋监视和监测三大系列的遥感卫星系统,逐步形成多种观测技术优化组合的全球海洋观测与数据获取能力。后续将开展国家海洋环境实时在线监控系统、海外观测站点建设,建成全球海洋立体观测系统,保障海洋生态、洋流、气象等观测应用。 + F9 N. W& u' Y
在全球海洋观测站点覆盖方面,我国在西太平洋、东印度洋、南极、北极等海域部署观测站点,初步开展全球重点海区观测。“十三五”时期,我国积极整合国家海洋观测能力,深度参与国际Argo计划、热带太平洋观测系统计划,建设覆盖太平洋台风活跃区、厄尔尼诺区等重点区域的长期观测系统,成为国际海洋观测的重要参与国。此外,我国参与建设国际岛礁生态链和观测系统,与21世纪海上丝绸之路沿线国家共建海洋观测系统,提升对全球海洋预报观测的贡献度。
6 [. G+ b; b: I4 F& P 在全球海洋数据通信方面,随着北斗卫星导航系统全球服务能力的形成,基于北斗卫星通信的海上实时传输终端应用趋于成熟。天通一号卫星星座建设完毕,覆盖太平洋、印度洋大部分海域,具备基本的数据通信能力。低轨通信卫星星座有望在5~10年内进入全面应用。基于水声通信的水下无线传感器网络研究深入开展,试验结果基本达到国外主流水平。蓝绿光通信技术进入海上试验阶段,标志着无线光通信技术进入工程化应用研究阶段。 - w4 L! h" S0 a4 P9 g% W: W; q C9 \
在海洋大数据管理方面,我国初步建成以气象局、海洋局等机构为主体的海洋立体观测数据业务处理平台,但管理方式、数据标准、数据共享等有待协调统一。传统海洋强国积极建设海洋数据管理及共享机制,海洋环境监测规范及标准、海洋科学数据共享平台较为完备,支撑了资料收集、组织、存储、检索、维护、共享工作有序展开;随着国际海洋资源竞争加剧,各国间的数据资料趋向利益互换、协商交换的共享模式。相较之下,我国海洋大数据管理与应用水平有待加强。 ; Y. o- |$ o; f. W" G
02 近海业务化观测网 2 O5 T8 G. L4 j3 P# u. A
我国初步建立以卫星遥感、海洋浮标、岸基台站为核心,地波雷达、断面调查、志愿船等手段为辅助的近海业务化观测网,观测参数包含气象、水文、生态等环境参数,覆盖渤海、黄海、东海、南海(近岸)等海洋区域。观测参数、站位分布密度、长期连续性等基本满足海洋业务化观测需求,积累了大量资料数据,在数据处理、管理模式、体系建设等方面形成系列标准和规范。 ; U4 t& N1 @2 `
在海洋业务观测网分布方面,根据《海洋技术进展2021》数据,在位海洋站观测系统有330多个,海岛(海上平台)自动气象站有310多个,强风观测站有200多个,船载自动气象站有100多个,业务化锚系浮标有230多套,表层漂流浮标有200多套,Argo浮标有200多套,潜标有40多套。专业河口水文站、验潮站、气象站、雷达站等也有一定规模。国家海洋调查船队常年调查的海洋标准断面调查站位有100多个,海上志愿观测船有数百艘。
|) k' R3 n1 d5 M “十四五”时期,围绕海洋环境安全保障能力提升,重点发展海洋自主传感器研制能力(如可移动观测的海洋生物化学原位传感器、电磁场传感器、声学智能探测仪),高可靠智能固定观测平台技术(如高可靠性实时通信潜标、海气交互大剖面综合观测浮标),易布放式移动观测平台技术。开展海上试验,促进新研传感器、平台、组网技术的规范化。构建自主可控的南海观测示范系统、西太平洋深海科学观测网等,发展自主同化及预报技术,实现重点海区观测水平、预报产品、预警能力的跨越式发展。开发海洋生态环境保护、治理、修复等共性关键技术,支撑海洋生态文明建设。
* B: b2 I ?/ z" K3 U 随着观测技术、传感设备的发展,观测需求的增加,新型传感设备进入近海业务化观测网成为常态,观测参数不断丰富、观测精度不断提高、覆盖范围不断扩展。
" C, o) c# O/ ]9 `6 Y4 M 03 自主化海洋环境探测技术装备 - V6 K+ c( k8 O* H8 B4 ]- B
1.海洋观测平台技术
: Y$ R9 S j/ ~& J 海洋观测平台是各类传感器的载体、全球海洋立体观测网建设的核心节点,我国已基本掌握固定海洋观测平台的核心技术。大型浮标平台技术相对成熟,规格系列化的海洋浮标产品供应市场,整体达到国际先进水平;特别是大型浮标,在极端恶劣海况下的可靠性达到国际领先水平,满足沿海海域业务化运行需求。潜标研制工作起步较晚但发展迅速,潜标观测系统关键技术基本获得突破,数据实时传输、长期在位观测、水声探测等技术进展良好。海底观测网已在东海海域进行示范运行,验证了相关技术成果。
. f7 P V+ T0 Q9 g 水下、水面、空中无人航行器等移动观测平台发展迅速,有效载荷和续航能力进一步提高,技术层面进步显著;保持多样化发展态势,种类分布与国际主流同步。在无人潜器研制方面,波浪能滑翔器、无人水面艇、无人帆船、深海Argo,部分遥控水下机器人(ROV)、自主水下机器人(AUV)、载人水下机器人(HOV)、水下滑翔机等装备的整体性能接近或达到国际先进水平。深海环境中的水下导航与定位、浮力材料、水下高能量密度电池等技术则有待研究和突破。 3 Y; ?0 j3 H/ }+ e. G( a
在卫星平台方面,发展了海洋水色、海洋动力环境、海洋监视监测等系列海洋卫星,多颗卫星在轨运行。逐步建设由国产卫星主导的海洋空间监测网,基本实现全球海洋环境的逐日观测。此外,在水色遥感、海洋要素反演、卫星精密定轨等技术方向成果丰硕,支持了业务化监测应用与示范。 . W" R+ `( R8 q+ T+ m9 C( K
2.传感器技术
' _4 Y+ m0 ^! |$ Z" S! a 传感器技术是构建海洋观测能力的基础和前提。近年来,我国在海洋环境传感器技术方向进展显著,新型传感器不断涌现,促进海洋观测、监测、探测朝着实时、原位、精细、立体、智能方向发展;但对比国际先进,国产化海洋传感器技术整体水平仍处于“跟跑”阶段。在“十二五”“十三五”时期国家重点研发计划等渠道的支持下,约70%的近海、常规传感器实现国产化;但超过80%的深远海、高端传感器依赖进口,潜在的市场垄断和技术封锁不可忽视。国产原位在线生态传感器的长期可用性仍待提高。在传感器通用技术方面,受工业基础、原材料、关键元器件等制约,敏感元件、微弱光电信号检测与处理、功能材料等系列关键技术尚存差距。
7 M! a5 B, F, D6 n% k 二、我国海洋监测仪器装备发展方向
- W, E, ~5 D3 H6 s$ C 1 全球海洋立体观测网建设 1 v" {" s8 L, ~0 V3 f
1.一体化、可视化、智能化 - c# d, o0 A! J" l( z( G
为实现我国海洋立体观测网的能力覆盖全球化,应以需求为牵引,按照顶层规划分步实施。立足现有海洋观测网络基础,逐步扩大覆盖范围,由我国近海向中、远海拓展,重点典型海域向全球海域发展,水面向水下、海底延伸。综合应用固定观测、移动观测、遥感观测等平台,形成全球立体观测平台与能力,建成“空、天、地、海”一体化、可视化、智能化的全球海洋立体观测网,为我国周边和全球的海洋科学研究、作业活动提供全维信息支持。
) v0 Z9 t" b x! X5 v 2.实时、精细、长期化
. L/ B D' h2 T8 N" y& R Y 着眼全球海洋立体观测网建设需求,弥补传感器、平台、组网等技术短板,加强智能化、覆盖范围、观测方式、综合保障、数据共享等方面的能力建设。持续完善观测平台技术,如地球同步轨道海洋卫星观测,“天、空、海”“水面、水中、海底”智能组网观测;发展在全球大洋快速机动组网观测、在重点区域进行长期观测的技术能力,以立体观测部署多样化、静/动态设备组合化、观测规模扩大化支持“实时、精细、长期化”的海洋观测。积极参与国际合作计划,完善监测区域分级制度,逐步提升对全球海洋、气候、环境变化过程的监测及预测能力。 % p& \9 t" r$ w0 J
3.智慧应用与服务连接
, i0 h w! N: ^ 观测数据与应用的纽带在于全球海洋观测数据管理。发展全球海洋观测大数据实时通信与传输技术,提升全球海洋数据实时获取与自主可控水平。延续现有观测数据业务处理平台,扩充面向国际、服务不同层级用户的智慧型终端产品,进行海洋观测大数据的集中存储、处理、分发、共享;高效利用全球海洋数据,支持防灾减灾、经济发展、气候变化、环境保护、权益维护等海洋领域应用需求。
$ a6 D; [1 T8 ?+ \/ x% d 2 国家近海业务化精准观测系统建设
3 {* U2 s h' x- k5 _# ?9 p" ] 1.精细化、精准化、标准化、一体化观测 8 V: K8 ^' E* F/ L
构建覆盖管辖海域,“空、天、地、海”一体的业务化监测系统,提升近海业务化的精准观测能力,支持空间/时间精细化观测、多要素精准化测量。建立具有国际先进水平的区域精细化海洋监测业务系统,改善“风浪流潮”等动力要素的观测数据质量,提升观测要素精度、观测设备可靠性、观测数据准确性。同步开展观测数据协议、传感设备接口标准化建设。 6 y* N# K+ _# {2 c. e% y
2.生态要素业务化观测
' y3 _( g3 P7 v6 [" W+ s/ g 以海洋业务观测形成的水文气象参数为基础,进一步扩展观测要素种类,如生态环境要素原位自动观测、海洋碳源/碳汇观测、生物光学测量、海水表皮层光学特性测量、海水化学成分测量、海表面大气成分测量,形成精细化的海洋监测业务系统。实现生态要素的现场自动监测,融入业务化观测体系,支持海洋生态灾害预报预警、生态治理与修复。 e8 ^; W1 V0 H- `4 @; K2 @
3.精准应用与服务
! M- m& |, J7 D( }9 }* O 以防灾减灾、海洋生态保护等业务化观测为主导,统筹陆/海系统建设,优化站点布局和分布密度,增强对海洋动力、海洋生态等要素的精准测量能力。研发多源观测数据同化技术,形成业务化产品,提高现场长期观测的准确性、稳定性、可靠性,构建生态要素的现场自动监测能力。针对海洋环境污染防治、生态保护修复、海洋碳中和等研究与应用需求,提高海洋动力灾害预报准确率、生态灾害早期精准预警能力。
# {1 b' O0 |! y$ E! d% P 3 自主化海洋环境探测技术装备研制
5 u: y, j7 D$ }) B 1.自主可控与产品化
5 w5 J B2 h Y6 f7 e1 A1 @ 突破海洋探测装备中的“卡脖子”技术,提高海洋环境观测仪器装备的自主可控水平,逐步实现高端、核心仪器装备的自主供给。开展海洋传感器技术工程化、标准化、产业化、成熟化研究,改善传感器的功耗、寿命、稳定性、可靠性,提高装备对复杂海况、恶劣环境的适应性。支持国内海洋仪器品牌发展,形成包括研发、设计、建造、配套、试验、运维等环节在内的全产业链产业化能力,积极参与国际市场合作与竞争。 8 V: Z5 D) H# x% M; s
2.原始创新与智能化 2 _4 H l" G3 C) ^; n
吸收并转化人工智能、智能制造、大数据等新兴技术成果,研究和应用新原理、新技术、新方法、新材料、新能源,支持海洋传感器核心技术、水下氢燃料电池等能源供给技术攻关,为原创、高端传感器及装备自主研制筑牢科技基础。注重智能化传感器及装备研发,在多功能模块设计、高精度导航定位、控制算法、信息传输、负荷搭载、浮力材料等方面进行系统突破,提高装备及应用的智能化水平。
" u, f* G" z1 R1 _, Z 3.协同观测与网络化
/ k$ w0 G' i i) M8 w 在信息感知、物联网、云计算等新兴技术的推动下,利用组网协同技术增强装备的观测和探测能力,实现海洋环境测量参数综合化、观测系统模块化、数据传输实时化、观测服务网络化。
; k* p* |, d4 \. d4 j 三、我国海洋监测仪器装备研发重点
3 L+ N: h6 z; c3 S% X+ d3 l0 z 1 高性能海洋传感器基础研发
$ D( W G. R1 @7 F. U% V+ \; ]0 b" g 一是开展新型海洋传感器研究与应用。突破传统思路和技术惯性,探索新测量原理和方法,为全面解决海洋传感器的高灵敏度、高精度、高响应速度、高信噪比、高可靠性、高耐受环境能力、微小体积及重量等要求提供新路径。深入研究传感器阵列技术、等离子体共振技术、膜技术、生物传感技术等,完善海洋监测传感器关键技术体系。
' h+ W( w; S: y 二是发展微型化、智能化、集成化、网络化传感器技术。研发具有自补偿、自校准、自诊断、远程设定、状态组合、信息存储及记忆等功能的智能化传感器,实现传感器的紧凑体积、极小质量、极低功耗,适应单功能到多功能的集成需求。 - H8 o# L4 U& ~( Y3 E3 u+ u
三是发展深远海、极地、极端海洋环境、特殊事件应用传感器技术。开展深海高压、极地极寒等极端恶劣环境下的新型传感测量、水密耐压、极寒环境供电等关键技术研究,自主研发海洋系统多圈层探测和观测技术装备。 # U+ B0 q' o4 M, Y W
2 海洋环境立体监测关键共性技术
0 ?6 T4 c! {/ B2 x9 N- k 一是水下监测实时通信技术。①大水深和全水深深海数据实时传输技术,具备深海数据长距离稳定传输、全水深实时传输节点接力及错时通信、实时观测系统小型便携、大水深/全水深实时潜标海上布放回收等能力,实现深海潜标全水深观测数据的实时回传。②深海潜标和岸基站的双向通信技术,根据实时回传数据结果,发出指令改变设备的观测频率、分层、数据回传周期等,为科研和业务用户提供更可靠的服务。③深海实时通信多要素、多平台组网观测技术,建立海洋多学科参数集成观测系统,增建坐底和悬浮观测平台,消除已有潜标系统在边界层、水平面上的观测盲区。 + L- M8 A2 q' q7 x7 C1 O. g
二是深远海海洋监测仪器装备能源补给技术。①海洋可再生能源发电技术,涵盖波浪能深远海阵列式应用技术及装备,海流能规模化智能化关键技术及装备,海洋温差能发电及综合利用,漂浮式风电技术及装备,海泥电池、同位素电池、海水温差发电等。②海底充电桩技术,在大洋海底建立电力储能装置,利用海洋能产生的电力进行转化储存,克服深海海底电力储能材料、发(充)电设备小型化等应用瓶颈。③供电技术,通过电力转换并在海底建设充电桩泊位,为水下移动监测仪器设备充电;通过有缆供电方式,为锚系潜标、海底观测网等固定平台提供补充电力,满足水下监测设备一年以上周期的电力需求。 4 V8 q5 _7 R+ H+ t: W
三是海洋环境多光谱联合的多参数同步原位探测技术。①发挥光谱探测具有的非接触、免定标、快速响应等优势,开发基于多种光谱、多功能联合的探测技术,通过共享器件方式在一台设备中实现多种技术兼容并行,形成海洋多种参数的同步测量与监测能力。②开展多种技术的交叉验证,更精细地反映海洋实际状况,形成高通量、多参数的原位快速检测分析方法,攻关基于多光谱联合的水下原位定标、高灵敏度探测、准确定量分析、关键器件国产化等技术瓶颈。③研发紫外深海拉曼光谱仪,开展针对深海热液系统的多光谱联合探测技术应用;发展激光诱导击穿光谱与拉曼光谱联合的系统、具有多种光谱联合探测能力的新型光谱类传感器。 " M5 b. R+ l/ ], [& ^
3 国际化海洋传感器检定校准测试体系建设 * L; ]- S N: \) E. Q/ s
一是构建与国际评价体系接轨的我国海洋传感器检定校准测试体系,形成统一的海洋监测仪器测试环境。开展海洋传感器校准测试的基础理论方法研究,发展海洋传感器新传递量值标准器、量值溯源传递体系。建立海洋传感器标定、校准实验条件并达到国际一流水平,革新海洋传感器标定与校准体系并提高检定校准及评价水平。 / C' E, O6 k2 m" V& S
二是借鉴国际海洋传感器评价方面的先进技术及标准,构建系统完备、运行高效的我国海洋标准化评价体系。建设计量校准检测技术支撑平台,形成海洋标准计量质量“三位一体”工作模式,体现严谨公正,达到国际领先水平。实施“海洋标准 化+”工程,推动标准融入海洋领域各细分方向,改善标准制定、修订的速度与质量。 / N) d( O D( s ^; J* ?
三是开展海洋监测仪器检测评价、标准化、质量控制方面的国际合作。建设全球海洋传感器计量检测技术交流合作平台,逐步扩大我国海洋传感器评价体系的国际影响力,推动海洋标准、海洋监测仪器计量校准结果的国际互认。 1 l, B1 }/ [5 e) N* g
荐读
' ~1 k3 x- z3 Y) l7 \' E8 } 张祖勋院士:科研报国守初心,薪火相传育英才 # ~) d9 |/ \- j, |7 `
全球首套5米分辨率宽波段多光谱卫星数据集(JLS-5M)发布 ! a2 e, j# V# m4 Z: ]4 s. T8 w
冯惠玲:用数字方式向世界呈现福建人文之美
9 F/ A N. y/ I2 d3 a/ b 《慧天地》敬告
& H' W" Z& `5 Z 《慧天地》公众号聚焦国内外时空信息科技前沿、行业发展动态、跨界融合趋势,发现企业核心竞争力,传播测绘地理信息文化,为相关专业学子提供日常学习、考研就业一站式服务,打造政产学研金服用精准对接的平台。 1 q3 u. R6 Q* W2 X# C: P
《慧天地》借鉴《读者》办刊理念,把时空信息领域的精华内容汇聚到平台上。我们高度重视版权,对于精选的每一篇推文,都会在文章开头显著注明出处,以表达对作者和推文引用平台版权的充分尊重和感谢;对于来源于网络作者不明的作品,转载时如出现侵权,请后台留言,我们会及时删除。感谢大家一直以来对《慧天地》的关注和支持! . L: ?- |; m! w) h
——《慧天地》运营团队
5 o* p, j, U" p5 o 9 V/ m& c" R H- J, w
投稿、转载、商务等合作请联系
# ~8 v d1 B/ n 微信号:huitiandi321
6 f4 g: L. R$ H- l, V
& }; Q& Q" \( X7 l& ]+ \ 邮箱:geomaticshtd@163.com 编辑:吴春奇 审核:刘欣然指导:万剑华教授+ A( k& W8 d% h; ^' o, z
1 e3 J( t* o5 Z' p) E+ F
) z9 \, i9 p5 X( ~' j; ?
1 ~. g1 q; b0 n; U. h/ h6 ~7 Y& C
* }3 V5 b" B+ `4 w5 r# L |