6 P9 l6 N6 ~4 p8 r- _ m( e5 Y
仿生软体机器人,或许会像无人机颠覆空战格局一般,成为海洋探测领域超越传统深潜机器人的霸主。
( \3 s# o1 ?# L5 { 仿生机器鱼:海底1万米深,就这?|编辑制图来源 | 科普研习社 微信公众号
) G2 H7 O* O/ S, U, D% y* g0 \ 作者 | 郭菲 烟台大学 4 R9 P! K) } ~
海洋的深处有什么?在幽深的海底,各种奇特的生物引人遐想。但对于人类,深海探索长期以来都是工程技术领域的难题,各种人造结构想要抵御深海压力,就不得不首先具备厚重的承压外壳。 : {* V7 v; m9 {7 ~/ e
不过,一群来自浙江大学和之江实验室的中国科学家却反其道而行之,他们从一种神奇的深海鱼类身上汲取设计灵感,制作了以柔性结构作为主体的深海机器人,它成功克服1000个大气压的极端高压,在10900米的世界最深海沟底部自在游动。
3 w( |$ |/ m; q8 E 这项成就以封面报道的形式登上了2021年3月的《自然》杂志。
$ H1 L$ P' P0 c4 ^* H) u' Y) l9 m* m 难以企及的海底最深处: B3 y2 {( {7 G: V. p+ l/ ?: Y8 J
由于探索困难,人类对深海知之甚少,这片广阔的领域实际上仍然是尚待开发的处女地。海洋地理学上把6000米以下深度的海洋称为超深渊带,这里物种的数量与多样性都无法和浅海地区相提并论。
/ g( V* ^! z4 i# w. G 1960年,人类的足迹首次达到地球洋底最深处——距离海平面10900米的马里亚纳海沟底部。这里的水压大约为103兆帕,相当于海平面大气压的1000倍。形象一点说,这个数值下的压强好比是一头北极熊站在一张邮票上,或者相当于一个人背着50架波音737客机。
" o8 `/ S4 w0 t 如此巨大的压力对于人类现有的工程设备而言是一个严酷挑战,因此传统的深海机器人和载人深潜器都具有厚重的外壳,即便如此,也仍然要冒着因材料或者结构缺陷造成外壳溃破的风险。正因为难度如此之高,人类突破深海与进军太空的时间,基本处于同一年代。
{9 b( y0 y2 [+ R 深海的巨大压力,对传统机器人和深潜器是严苛的挑战。|图虫创意狮子鱼,机器人的灵感来源- w: S2 M$ ~: D! L' K: v0 M
不过,对于人类而言至难的伟业,对于深海鱼类来说却是稀松平常的事。目前,鱼类捕获深度的世界纪录保持者是一只神女底鼬鳚,它于1970年在波多黎各海沟8370米深处通过拖网方式被捕获。神女底鼬鳚在全球深海海域都有分布,但科学家在那之后一直未在8000米海域发现它的生存迹象。因此,这位世界纪录保持者很可能生活在更浅的水域,只不过是当时恰好被拖网带到了8370米深。 ' ~) L2 D, g6 G: K& v; d
真正日常栖息在8000米深处的鱼类,于2014年首次现身于人类的视野,就是当下深海生物界的当红炸子鸡——深海狮子鱼。它通体呈现粉白色,通常长度约为30厘米,体重约160克,样子看上去像一只巨大的蝌蚪。在马里亚纳海沟部分8000米深处的洋底,深海狮子鱼是食物链顶端的猎食者,平时以生活在洋底的甲壳类为食,在其所栖息的海域并不算是稀有物种。 ! w `0 T/ M! |1 U6 [6 x( c- _
深海脊椎动物头号“抗压王”——狮子鱼。|维基百科深海狮子鱼的极限抗压能力令人咋舌,经过研究,其体内存在大量的胶状物质,这对于它们平衡内外压力具有重要作用。另外,它们的骨骼进化出了一些适应于深海压力环境的特征。除了保护大脑的一部分头骨,它的绝大多数骨骼皆为软骨,且骨骼衔接位置留有大量空隙,这些空隙可以极大地中和施加到骨骼上的压力。 0 j" e+ s# D. g% U1 ]
挑战深海高压,仿生机器人以柔制刚 z9 B" N9 z7 F; W8 _
深海狮子鱼这一物种被发现后,短短数年间就引发了科学家的强烈兴趣,这其中既有致力于揭示其解剖结构和起源演化的生物学家,也有致力于利用其作为灵感来进行深潜机器人设计的工程学家。
9 l8 b2 F0 [9 a, _ 该物种最早的发现人之一就曾在2018年利用3D打印技术制造了一只硅胶机器人版的深海狮子鱼。但这只机器鱼功能十分单一,而且设计它的最初目的还是为了研究深海狮子鱼的生理结构。 . G% a$ x* N: r/ J
3D打印制成的机器狮子鱼|@STACY FARINA AND M. GERRINGER/FRIDAY HARBOR LABS/UNIV. OF WASH.不过,这次中国科学家更好地借鉴了深海狮子鱼的过人之处,发展出了一种全新的深海机器人。 . v1 E6 c1 `) t* V7 |
其核心设计思想正是参考了深海狮子鱼适应深海的两大特征:第一,摒弃了笨重的抗压外壳,采用软质有机硅材料作为主要躯干,以柔克刚;第二,将各种电子部件均匀分散到身体各处,以实现最大限度的压力平衡,同时防止各组件在受到外壳变形后相互挤压失效。 - b! h) U1 ]6 k; J" j$ U, S
这个仿生机器人的另一大亮点是拥有一对鱼鳍状的推进翼,扇动推进翼就能让机器人在海中前行。虽然这一设计同样借鉴于深海狮子鱼的两片胸鳍,但必须指出,后者的胸鳍其实并非起推进作用,它们的运动方式其实非常类似于蝌蚪。
# E& i4 u) P/ m3 u6 b) a 仿生深潜机器人和其借鉴的对象(示意图)|LI ET AL/ NATURE 2021目前,该机器人已经在70米水深的湖中、3000米水深的南海,以及接近11000米的马里亚纳海沟底部进行了一系列实验。前两种情形下,机器人完成了仅依靠推进翼的自主游动,而在马里亚纳海沟完成的实验中,科学家们用深潜器的机械手将其进行了部分固定。 % v: o9 U! B) `: C
9 c; V5 l# Q4 ]8 s V. N. c5 W; w. \- P - Z9 x+ N, N, {- B
软体机器鱼和深海虾、硬质机械臂同框|LI ET AL/ NATURE 2021不过,该仿生机器人还存在至少两点尚待改进之处:首先,它的游速比同类深潜机器人慢的多;另外,它还没有足够的动力对抗激烈的海流。不过,学术界仍然对它的未来寄予厚望,作者总结称,“下一步的工作将专注于开发软体轻质的材料和结构,让用于极端条件下的装置具有更好的智能性、通用性、操纵性和效率”。
- d! e, o4 t- _# E- i# {: A2 O- y* [# c 未来,类似的仿生深海机器人不仅将拥有灵活运动的能力,还将具备多种本领,例如探测海水成分、拍摄深海生物照片及视频、收集样品并返回海面等。它们在成本上的显著优势,将很有可能像无人机颠覆空战格局一般,成为海洋探测领域超越传统深潜机器人的霸主。
% I/ J0 ~$ \* d# O 编辑 | 梁金 王晓非
2 i! P0 v3 c- n9 `5 b 责编 | 高佩雯 + t4 m4 u8 x% z6 P& o
参考文献 . y' N) Q& F, M% s5 r" H7 O
[1] https://www.nature.com/articles/d41586-021-00489-y * v( m$ Z4 s$ z& `
[2] https://www.nature.com/articles/s41586-020-03153-z $ h$ h) F* o' [ [! B
文章由“科普研习社”(ID:cspbooks)公众号发布,转载请注明出处。 " a* u, M8 I' ]% j
! u% m. U8 _' t1 C' V3 r# J! y9 d j3 y
* p% p- Q; H A7 I5 t) z
+ i. m" |8 n: R% J, @( O+ F |