1 k; `# j5 l/ b/ U% _ J/ _ 点击上方"海创智图"关注我们吧~ ! x) F" |) P' @) C9 Q
5 A2 ]) b* i' W0 W1 N/ Y5 i 海洋,气势磅礴,博大精深。地球上71%的面积为海洋所覆盖,全球96%以上的水储藏在海洋之中。21世纪是蓝色海洋的世纪,海洋中有着数量惊人的生物种群,构成了丰富多彩的生物大家庭。海水运动的能量、海水中的有用矿物质、海底的油气和锰结核等资源,都等待着我们去了解。 - y4 `/ G& Q& b* o
海洋是云雨的故乡、生命的摇篮、资源的宝库、人类生存与发展的“第二空间”。海洋中的波浪、潮汐、洋流、(海底)地壳运动等,虽有一定的规律可寻,但是仍旧神秘莫测。海洋地理的研究对象包括海洋水体、海岸与海底,其研究范围涉及地球的岩石圈、水圈、大气圈和生物圈四大圈层,内容主要包括海洋地理环境、海洋资源开发利用、海洋环境保护、海洋立法与管理以及海洋信息技术应用等。本文就来谈谈海水温度、盐度及其分布,波浪及其运动规律,海洋内波及其危害等四个海洋水体方面话题,供大家学习与参考。
! F" A- F9 E: p# { 01 ! R. k2 M9 n# F) [
海水温度及其分布
7 R3 F, @& r3 l4 A. d 海水温度是海洋热能的一种表现形式。太阳辐射是海水最主要的热源。受太阳辐射的影响,海洋表层水温的高低,随时间和空间而变化。同一海区,一般夏季水温高于冬季;不同海区,一般是低纬度水温高于高纬度。
! r2 H/ v' F7 O8 e 全国年降水量及海洋表面平均温度、蒸发量与盐度按维度的分布 3 |* @, O/ U: H
海水的等温线大致与纬线平行,局部地区因受地形及洋流的影响而发生弯曲,全球最高水温位于西太平洋28°N(受副热带高气压带、暖流、海陆位置等影响)附近。
; h" d' K# t6 w6 V6 U" x 除水平差异外,因海水导热率很低(太阳辐射首先到达海水表面),海水温度还表现出向深层递减的垂直差异。1000米以下的深层海水,海水温度随水深变化不大,经常保持着低温状态。即在垂直递减时,上层减速大于下层,在海洋深处水温趋向均匀。
) e5 D0 J: |% I/ U; ~ 中国南海海水温度随深度变化示意
0 }4 d0 C" j, j0 z& \8 C. O ]/ [) s 海水水温的垂直分布可分三层:
$ V) J; B K' l& k$ b; m9 b ①混合层,一般在大洋表层100米以内,由于对流和风浪引起海水的强烈混合,水温均匀,垂直梯度小。②温跃层,在混合层以下和恒温层以上,水温随深度增加而急剧降低,水温垂直梯度大。③恒温层,在温跃层以下直到海底,水温一般变化很小,常在2~6℃之间,尤其在2000~6000米深度区,水温为2℃左右,故称恒温层。
: f9 B, j3 U9 B4 q0 Y# H- ` 太平洋、印度洋、大西洋表层年平均水温为17.4℃。其中,太平洋最高,为19.1℃;印度洋居中,为17.0℃;大西洋最低,为16.9℃。此外,北冰洋和南极海域最冷,表层水温为-1.7℃至-3℃。
- f1 h0 G- \6 Y; X' G 当温度降至冰点并继续失热时,海水就会结冰。一切出现在海上的冰统称为海冰,包括大陆冰川滑入海中的淡水冰和由海水直接冻结而成的咸水冰。海冰通常出现于极地和高纬度海区,但因风的吹动、洋流及水深等原因,也可出现在中纬度海区(中国渤海湾海冰与之成因类似)。
/ t# ]4 y9 f$ K; @ 海冰覆盖了大洋表面的3%~4%,对海水的热量交换和大洋环流有着重要的作用。海上漂浮的巨大冰块,又称“冰山”,它是由大陆冰川的边缘冰体断裂、解体、下滑入海形成的,对航运(撞击冰山而沉船)能构成巨大威胁,属于一类中高纬度地区常见的海洋(自然)灾害。 : V' p, K4 W# [ L' B; V0 p) h0 V6 Y
由于海水的比热容大于陆地,因此海水温度变化比陆地小得多。这就使得海洋上空的气温变化比较和缓,从而对大气温度起着调节作用(海洋性气候)。当然,海水温度的变化也可能带来负面影响。据统计,以往100年间,由于表层水温上升,大西洋飓风发生的频率显著上升;1999~2004年,全球范围内海水温度明显升高,致使浮游生物数量显著下降,直接影响到鱼类、海鸟、海兽的食物供应,甚至威胁到它们的生存。
{$ g4 {( z9 r4 j+ S( V: a6 o 02
* |% C& k5 ~( h u; R/ C1 q 海水盐度及其分布 9 b( C- x/ d$ z X( I
海水盐度是指溶解于海水中的盐类物质与海水质量的比值,用单位质量海水中所含盐类物质的质量来量度。世界海洋的平均盐度约为3.5‰。海水的味道之所以既咸又苦,是因为氯化钠(味咸)和氯化镁(味苦)是海水中主要的溶解盐类。
( Y4 A7 A& a( x% T% R3 M 海水是一种混合水溶液,主要由水、无机盐、有机物和悬浮物组成。海水中溶解所有各种盐类物质,一般认为,海水中的盐类物质主要来源于地壳岩石风化产物及火山喷出物。此外,全球河流每年向海洋输送大量溶解盐,这也是海水盐类物质的来源之一。 ; w! `. O' f: h6 @' m) u6 h
在海洋表层,盐度主要与降水量和蒸发量有关。在近岸地区,盐度则主要受河川径流、海区形状等的影响。赤道附近降水丰沛,降水量大于蒸发量,盐度稍低;副热带海区降水少,蒸发量大于降水量,盐度较高;高纬度海区温度低,蒸发量小,加之反复结冰、融冰,盐度偏低。 : _/ _" _7 j& `8 q+ C: S
有河流注入(径流量大的河流,淡水可拓展到河口外很远海域。诸如,长江在夏秋季洪水期小潮时,淡水向东北扩散,一直影响到朝鲜半岛以南的济州岛,向南进入杭州湾海域)的海区,海水盐度一般较低。在暖流流经的海区盐度较高,寒流流经的海区盐度较低。
0 e% r. s$ @* Y5 \4 m1 X+ I; p 全球海洋表层盐度的分布规律是:从南、北半球的副热带海区,分别向两侧的高纬度和低纬度递减。世界上盐度最高的海区在红海,盐度超过4%;盐度最低的海区在波罗的海,盐度低于1%。 * Z u3 N$ G7 G" I) l
海水盐度在垂向上存在着分层:浅表层盐度比较均匀;随着深度增加,盐度会发生显著变化(这一水层称为盐跃层);到一定深度,盐度又近似均匀分布。在中低纬度海区,表层盐度较高,随深度的增加,盐度降低;在高纬度海区,表层盐度较低,随深度的增加,盐度升高。 4 E% M5 ]3 Y: g3 @1 ]
海水盐度的变化,会对渔业和生态产生重大影响。诸如,黄河河口区表层盐度的增加,以及海洋污染、入海径流量减少等方面的原因,导致海洋生物数量减少、种群退化,河口区生态结构发生较大改变。 P* l0 Z4 f0 n" a; L2 ^/ {7 d
海水中所含的盐类物质数量巨大,如果把世界上海水中盐都分离出来,平铺在陆地上,可使全世界陆地平均高度增加153米。利用海水盐,是人类利用海洋资源的重要方式。海盐主要是海水经自然蒸发而晒制出来的。 8 T3 E6 T6 y3 X* U
我国东部沿海的一些地方(四大盐场:渤海湾的长芦盐场,黄海苏北或淮海盐场,东海的台湾西部布袋盐场,南海的海南西部莺歌海盐场),海滩宽广,风力强劲,晴天多,日照充足,蒸发旺盛,适合晒盐。我国海盐产量长期居于世界首位。
4 S2 I1 \3 D: Y P 03 & r y3 y5 [! u
波浪及其运动规律
* ?( ]8 j& A1 F. }2 S. w 波浪是水面有规律地高低起伏运动,并向一定方向传播的现象,是海洋中海水经常性普遍存在的运动形式。其成因以风力作用为主,也有因海底火山喷发和地震、气压突变等产生。风力引起的波浪称为“风浪”,火山爆发和地震引起的巨浪称为“海啸”,气压突变而产生的波浪称为“气压波”。既具有巨大的破坏力,又蕴藏着很大的能量。
4 K- S8 `. Q5 Y8 M+ c, K) T 波浪要素 # ^3 H( }0 l) V l) S3 v/ ?1 `' l
波浪是一种振荡波,振荡波的特点就是质点不随波形前进,而只是在原地往复的园周运动。波峰处水质点处于园周的顶点,波谷处水质点处于园周的最底点,峰谷之间,水质点处于园周的顶点及最低点之间。
* `# x0 N( B: F% Z8 \8 b 水面向下水质点运动的园周直径逐渐减小,波浪则趋地平缓,这是由于随深度增加,水内磨擦也就是质点之间的磨擦力增大的原因(质点动能减小)。当水深小于1/2波长时(近海岸处)由于海底磨擦助使质点运动轨迹成为椭园形。
. I& a) S; _8 ~4 e' ]$ \ 波浪岸近海时,水深变浅,由于海底磨擦前面的波浪较后来的波浪速慢,两波浪间距离减小,多余的能量使波高加大波峰前倾形成卷浪。卷浪前端悬空很快成为波浪,破浪被碎后,水质点不作园周运动,而迅速涌向海岸成为拍岸浪(激浪)拍岸是海水破坏海岸的主要动力。拍岸浪冲击海岸的过程中,能量消耗在克服沙或岩石的磨擦阻力,海水由于重力沿斜坡流回海中,这种流向海底的回流称底流。
/ Z h; u; y- f- s/ g& E 拍岸浪冲击海岸的过程中,能量消耗在克服沙或岩石的磨擦阻力,海水由于重力沿斜坡流回海中,这种流向海底的回流称底流。 / a, `* L+ M/ Y* N8 }0 d
斜向海岸的波浪到达岸边后,一部分以底流回到海中,另一部分成为沿岸流,带动沉积颗粒移动。波浪是破坏海岸的主要动力,当浪水迅速涌进沿裂隙时裂隙中原来空气来不及排出,被压缩在极小的空间产生很大的瞬间压力,使岩石崩裂瓦解。同时激浪抛弃全部起起巨大的岩屑、石块,撞击海岸岩石。
- d& i$ S5 b- s- E" g$ l 岩石在海浪的作用下:海蚀凹槽→海蚀崖→海蚀平台。 $ K3 O$ T5 o$ }2 Y; O7 c
如果地壳运动相对论是海洋平面位稳定时就不再发展这时,由于海浪(激浪)到达岸边平台外缘时,能量全部消耗在与平台海底的磨擦之上,不再具有剥蚀能力。这时的海岸刻面为海蚀平衡剖面。 6 Z, L9 D1 y+ d1 i
地壳上升,海面下降,海蚀平台转为海蚀阶地;地壳下降,海面上升,海蚀平台转为水下阶地。波浪形成沉体沙岸,沿岸底砂在激浪进流推动下一步向岸移,返回底流下带回海堆积下来形成砂坝(平行于海岸)。 * l9 ^$ P# T1 F @7 W' |) |; t3 A/ b* i' O
沿岸流在海湾处形成砂嘴 - R, I5 m& a& V! x; |
04
c% Y9 H( ?1 Q+ y8 k 海洋内波及其危害 & S- Z, C/ x5 ?
内波是一种水下的重力波,它经常发生于不同的分层介质中,比如我们将油和水两种密度不同的液体混合,在它们的分界面上,当受到一定的外力扰动时,会产生相互之间的扰动,从而在混合液体的内部形成“暗流汹涌”的状态,而混合液体的表面一般是看不到什么异样来的。 ) w; m& r Y; q- a4 n# H, c; |
海洋实质上也是由不同密度的介质所构成的混合液体,其中上层海水往往温度更高、盐度更低,下层海水一般温度偏低、盐度较高,这样上下层海水之间,就会产生密度差,形成分层现象。当海水在流动的过程中,遇到海底复杂地形的影响,甚至强烈的风、潮汐等作用下,就会出现“内波”现象。
: {9 ]$ Q2 K! X2 X4 E5 ? 由于内波相较于海洋表面的波浪,其能量要小很多,所以在很小的外力扰动下就能够产生,所以,在靠近大陆架的海域、洋流常年流动的线路附近、热带气旋的主要发源地带,都有较大的几率产生“内波”。
1 I$ l- t9 l+ Z$ e: b7 R4 | 虽然内波本身携带的能量没有海浪大,但是,在不同介质的水体界面上,水体的运动方向往往不一致,会呈现一定的角度甚至完全相反,那么就会在界面处产生相对运动的剪切效应,就如同一把剪刀一样,产生极大的破坏力。 # p5 G5 `* y! P7 P" Q
其实,不光是海洋中会形成“内波”,在大气层中也有几率出现。因为大气层随着高度的不同,温度也会发生变化,特别是在大气密度最高的对流层中,也会出现具有冷热分层的空气,在空气对流扰动下,也会形成“看不见”的内波。
7 t7 U4 L: W4 H% f 其实,海洋中的内波,和海面上的波浪一样,也是广泛存在于地球上的各大海洋中,只不过内波的传播速度、振幅、周期以及深度,会由于海水密度的差异程度、温度差异的高低、海底地形、外力扰动强弱,而出现很大的变化。
7 K8 M6 z/ f- W* M) D0 X 一般情况下,海洋中的“内波”,可以在海面之下传播几公里甚至几十公里,持续的时间可以延续到几个小时。从振幅来看,其上下波动的范围,经常会超过50米。有的“内波”形成以后,可以在水深10米左右的海面之下,形成高达40~60米的水波,非常强烈地影响海水的稳定性,只不过这个水波的方向,一般是向下延伸的。由于“内波”扰动海水的能力非常强大,而且在海水表面还不容易发现,因此无论是从真实还是潜在的破坏力来看,威胁都是非常大的。 ! ]0 h5 ?4 r7 M; c' g7 _* L
在世界各大海域中,“内波”发生频率较高、强度较大、破坏力较强的区域,最明显的莫过于直布罗陀海峡。比如1984年,前苏联一艘潜艇在通过该海峡时,突然失控撞向了一艘货船,潜艇和货船均出现了不同程度的损坏。之所以直布罗陀海峡“内波”效应非常显著,一方面在于其海水分层现象非常明显,另一方面是由于海底的地形地貌非常复杂。 % Q' {0 x% [- I9 e. H
除此之外,我国的南海区域,也是“内波”效应比较明显的海域,其造成的剪切力可能还更为剧烈,主要原因在于南海区域即靠近大陆架,其深度也很深,因此“内波”的振幅有时会高达300米。 & l6 @, ^0 {- [5 b: s
除此之外,像印尼的龙目海峡、意大利墨西拿海峡、安达曼海等区域,也经常发生“内波”效应,对来往的船只以及近海潜水作业造成严重的影响。 * O0 S; B8 K& [6 H# i- u
“内波”就像是沉睡在海水中的“巨人”,它来无影去无踪,虽然我们很少能直接看到它,但是它的确普遍存在于海面之下,随时“窥视”着海洋中的一切,冷不丁来一下子来证明它的存在。如果我们在海面之上,看到有一行行间距非常大的微波,那极有可能下方就暗藏着“内波”,这个时候我们就得注意了。 END免责声明+ G( \ D' j# Z$ [" d3 ]7 O
本文系海创智图订阅号编辑转载,转载目的在于传递更多信息并不构成任何投资及应用建议,投资者据此操作,风险自担。我们尊重原创者,版权归原作者和媒体所有,在此向原创者表示感谢;如涉及作品内容、版权和其它问题,请在30日内与平台联系,我们将在第一时间删除内容!本文章版权归原本作者,海创智图拥有对此声明的最终解释权。 2 s( w2 ?/ @; x" l, j
海创智图 智慧海洋基础设施与数据服务商
' E2 K4 c/ h7 e; X 关注获取更多精彩 5 b1 y; {/ v0 r7 l( j
7 ~7 x) O, v: b! T
, i) N# Q8 E5 x- I- F0 M
$ s) i6 {* l7 z* ]6 Z! Z U" k
8 Z2 e% I( ]4 _& C7 ^2 o |