[数据处理] 从nc文件中提取风速数据并且进行时间序列分析

[复制链接]
                                   本文目的
  • 介绍了如何从nc文件中,提取风速数据;
  • 介绍如何将风速数据转换成时间序列;
  • 简单的时间序列的趋势拆解(首发)。) q: h" n% V* ]
    3 j, s# j) ~* D7 s7 |  q
代码链接

代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS

8 U4 P" ^: j& i! v  J5 T

过程介绍
/ h! ]( A$ b- T0 n
* s" E' t0 i* }' t+ Q. }$ O
: w: T! V! Y8 X9 }2 q+ u! ^
1. 导入包
' g: \. c6 x! V3 h1 v; b- J) N
# k5 I) g9 Z0 e4 ~/ g3 K8 n# A- ]+ m! Z9 q
[Python] 纯文本查看 复制代码
# 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc  # 处理nc数据
from netCDF4 import num2date  # 处理nc数据
import geopandas as gpd  # 处理网格数据,shp之类的
import rasterio  # 处理tiff文件
from shapely.geometry import Point  # gis的一些逻辑判断
from cartopy import crs as ccrs  # 设置投影坐标系等
from tqdm import tqdm  # 打印进度条
from joblib import Parallel, delayed  # 并行
import platform  # 检测系统

tqdm.pandas()

# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
    plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
    plt.rcParams["font.family"] = 'SimHei'
else:
    pass

7 h- C8 k- c3 p4 w. {* T
: R  b, R1 E, `! c! I/ N
  j0 Q0 a" V9 s* G2 _# @$ o$ o
2.导入数据 处理数据
/ g. d" q/ w  }  b! E/ u
8 U, X0 U: t* t

7 d& a$ H& _5 A! X
[Python] 纯文本查看 复制代码
# 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")

# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan


# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
    """
    将nc文件里面的时间格式 从cftime 转换到 datetime格式
    :param cftime:
    :param units:
    :param format:
    :return:
    """
    return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)

clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]

' K* B' _3 z% h7 f6 C% Q+ C% B
4 N% X' |* o* s- K7 k3. 计算风速数据3 A  Y- X. W- u; u. d

, b- b/ L2 K' y
/ |% }9 `2 Y# Y4 _
[Python] 纯文本查看 复制代码
windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])

time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed

# {: z; q) Q- m9 I) {
6b7fd110a68e6d3fd40460ccdd7a810b.png
5 b6 y+ Y0 R  b/ B+ e0 ^

- V) i1 q- E5 O2 @$ h

8 Q0 |7 _4 B7 p4. 年度数据可视化7 G4 u6 G' r' i& u, `$ @, ]; z- M

/ C. `) b7 ?' I; E% M9 L* H' v0 o

( L: D- e8 s# d! _6 z- Q0 X
[Python] 纯文本查看 复制代码
year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

# year_data

with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(year_data['time'])
    #
    #
    for i in range(year_data.shape[0]):
        ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
    #
    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各年平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")

* ?# Q: Z8 D& A. c& P
952d93a401a01cd1fa10be892b8b64d6.png
: K. a: z& `# I* [4 i. f) O' q

# d8 I+ I, H, Y. y3 v6 s0 }

( o; y) L! U5 ^! }. H1 T2 f5 G+ |5. 月维度数据可视化* f. R+ m9 Y6 R% Y" y9 Z# v" T: L
[Python] 纯文本查看 复制代码
month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()


with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(month_data['time'])
    _ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])


    for i in range(month_data.shape[0]):
        ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))

    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各月平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
    fig.savefig("month_plot.png")
( w7 `0 k" h3 _- F2 F/ A
a520cff3361647efbb668c89005a5570.png

& ~  p9 |  @9 B& M' C
) o' h& L6 y( f$ R$ d

0 N( k. N: c7 Q( T' L0 b1 P6.天维度数据可视化
4 G/ t, V% H8 n1 b
  • 计算天数据! Q' a4 g$ C; }& l. F$ S2 `
    ! }5 S$ k& J) \. f4 B4 R
[Python] 纯文本查看 复制代码
day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

day_data['time'] = pd.to_datetime(day_data['time'])

day_data = day_data.set_index('time')
day_data.head()
  • 可视化) Q  f) h" l4 M8 n! T) f+ I

    % Q8 l$ I0 I& y2 H2 A8 U: J7 ]1 n
[Python] 纯文本查看 复制代码
# day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')

4 Z' a' e7 l8 J; }, c
5 G: H3 U6 R& B
4 N# s; T9 G8 P: ?
053571827f212c867e38f40c8aa49ca5.png
$ v) y4 |, f: g, V* e2 h3 b
1.天维度数据做趋势拆解; s2 U; {* |0 E! y

8 u6 k/ m: R# s$ K1 e) ^5 D
[Python] 纯文本查看 复制代码
# 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
        'color': 'darkred',
        'weight': 'normal',
        'size': 16,
        }
# 画图

with plt.style.context('classic'):
    fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)


    def plot_decompose(result, ax, index, title, fontdict=font):
        ax[0, index].set_title(title, fontdict=fontdict)
        result.observed.plot(ax=ax[0, index])
        ax[0, index].set_ylabel("Observed")

        result.trend.plot(ax=ax[1, index])
        ax[1, index].set_ylabel("Trend")

        result.seasonal.plot(ax=ax[2, index])
        ax[2, index].set_ylabel("Seasonal")

        result.resid.plot(ax=ax[3, index])
        ax[3, index].set_ylabel("Resid")


    plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
    plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
    fig.savefig('decompose.png')
4 L/ d4 C' L7 e  Q6 @
cd8468c3910ecbcfac542ed3328df432.jpeg                
( X2 e. v3 G) W/ |% a

  u9 t$ {* ^+ B3 t
8 J  L1 U% N( Y+ `  |. C6 e
! {: r& ~5 t% r4 I! N, l4 t0 P- ^. S/ z- U7 w
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
尖叫的土豆
活跃在4 天前
快速回复 返回顶部 返回列表