本文目的- 介绍了如何从nc文件中,提取风速数据;
- 介绍如何将风速数据转换成时间序列;
- 简单的时间序列的趋势拆解(首发)。; R" V' Z y! L/ g
# X3 X) A8 B6 x 代码链接代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS。
, u/ K L% [! ^8 _
过程介绍
4 { ]) f6 _) `1 \+ }" m5 A; D X' S* c
' i0 h4 H, _1 l3 |0 p6 \4 R; M" j
1. 导入包
9 S" M6 Y+ d, r6 G* z3 N2 k8 j9 \! d+ F( B) r: g; ~$ S: Y
[Python] 纯文本查看 复制代码 # 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc # 处理nc数据
from netCDF4 import num2date # 处理nc数据
import geopandas as gpd # 处理网格数据,shp之类的
import rasterio # 处理tiff文件
from shapely.geometry import Point # gis的一些逻辑判断
from cartopy import crs as ccrs # 设置投影坐标系等
from tqdm import tqdm # 打印进度条
from joblib import Parallel, delayed # 并行
import platform # 检测系统
tqdm.pandas()
# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
plt.rcParams["font.family"] = 'SimHei'
else:
pass
4 Y5 Y3 B5 E, A5 j. L1 J" N0 o, I6 S8 b0 E$ f: @* Y
$ w7 `; P/ w; X# Z& c1 X" o" D2.导入数据 处理数据& J/ ]" w6 N9 O4 y' C! Z* H
5 S8 v' l/ d8 [" i
7 ]* X) O$ W: i3 f* M[Python] 纯文本查看 复制代码 # 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")
# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan
# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
"""
将nc文件里面的时间格式 从cftime 转换到 datetime格式
:param cftime:
:param units:
:param format:
:return:
"""
return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)
clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4] 5 t7 f7 X0 H0 F* o, |+ s: I ]! I* }
3 X% A* `+ q: y. _0 k9 a& W3. 计算风速数据9 l" I8 d- z; Z
$ p/ V8 T6 S3 i; z6 W, Z0 \8 O( m
! e) f( V1 Y: Y" T' a[Python] 纯文本查看 复制代码 windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])
time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed / O/ |& i& t5 Z0 ] T; W
4 t5 F& P4 w( I. O2 M; \
5 Q9 e r) Q% {+ w; X, Z% D! r
/ \' z2 d2 w. x) O4 s4. 年度数据可视化
D' P) v5 X! A& E; ]" H' ^( q* p
- `/ Z* s: L- K" Q& X8 w# o1 r3 k1 I# C8 d
[Python] 纯文本查看 复制代码 year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
# year_data
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(year_data['time'])
#
#
for i in range(year_data.shape[0]):
ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
#
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各年平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
# r. _/ C) n9 z$ {# \9 [
$ P( _. Z2 \3 z* }
2 v- C1 ^3 r* T7 R% a$ h4 ] C% H* B" t) V
5. 月维度数据可视化( s& X2 Q4 t/ U5 H/ H' m4 z1 D
[Python] 纯文本查看 复制代码 month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(month_data['time'])
_ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])
for i in range(month_data.shape[0]):
ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各月平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
fig.savefig("month_plot.png")
0 {7 J. M. f' E) L* {7 D2 i4 g' r f$ r* N
^ O3 D: ?9 x& t: a
; y- ?9 a6 w) e) H, u7 @# m( ?+ l; l& E6.天维度数据可视化
& O- r: f/ D3 I4 j6 ^0 u( y- 计算天数据0 _8 s, e/ G& S6 r
$ e- r1 E# p1 F" `
[Python] 纯文本查看 复制代码 day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
day_data['time'] = pd.to_datetime(day_data['time'])
day_data = day_data.set_index('time')
day_data.head()- 可视化6 T8 F6 {7 @6 k/ c7 H( z
+ i0 C$ u9 x+ O. i9 C. U
[Python] 纯文本查看 复制代码 # day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png') ?$ H& z! l0 z2 s- [* t( p; [
5 L( q! G3 |; J# W' G7 {
5 y9 y# M7 f6 g/ K. M6 C& {
. h( G5 B' o5 y- z% x. l1.天维度数据做趋势拆解7 l6 T+ E( P/ X) _% f: K% B
, q Z2 \; n( O1 L/ @# W* Y t( N) k[Python] 纯文本查看 复制代码 # 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}
# 画图
with plt.style.context('classic'):
fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)
def plot_decompose(result, ax, index, title, fontdict=font):
ax[0, index].set_title(title, fontdict=fontdict)
result.observed.plot(ax=ax[0, index])
ax[0, index].set_ylabel("Observed")
result.trend.plot(ax=ax[1, index])
ax[1, index].set_ylabel("Trend")
result.seasonal.plot(ax=ax[2, index])
ax[2, index].set_ylabel("Seasonal")
result.resid.plot(ax=ax[3, index])
ax[3, index].set_ylabel("Resid")
plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
fig.savefig('decompose.png')
9 c9 G& n, |/ x5 L. q# h/ H% m
. Q" P) S4 } X7 S' x
2 I8 M6 @- y5 x" f, [/ E
) |$ I" j* q% k1 M
8 W$ x! Q+ g# L8 R
6 H4 C" }+ D. w! I" D( t |