本文目的- 介绍了如何从nc文件中,提取风速数据;
- 介绍如何将风速数据转换成时间序列;
- 简单的时间序列的趋势拆解(首发)。3 Y) e& z) }3 t4 F; V t
# r7 O; c! U! R: k+ e/ V: \ 代码链接代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS。
. s: ?9 x7 M) }% R M
过程介绍 $ E9 u1 }! c& c9 v+ T% l
6 ]5 W4 G$ [# j; e9 n5 J0 e8 i8 E
; N- b f* Y4 {* q3 r1. 导入包
8 u$ Z$ p1 Y" K& ]0 h( w& ^" S! H$ f6 G* @) M9 e
[Python] 纯文本查看 复制代码 # 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc # 处理nc数据
from netCDF4 import num2date # 处理nc数据
import geopandas as gpd # 处理网格数据,shp之类的
import rasterio # 处理tiff文件
from shapely.geometry import Point # gis的一些逻辑判断
from cartopy import crs as ccrs # 设置投影坐标系等
from tqdm import tqdm # 打印进度条
from joblib import Parallel, delayed # 并行
import platform # 检测系统
tqdm.pandas()
# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
plt.rcParams["font.family"] = 'SimHei'
else:
pass 6 q- v' r. T" t. x. W# a0 t
" Z, l% r# [' `, i3 @& I) w
; V) w8 d& H4 U, Q7 t. Z5 @2.导入数据 处理数据5 s( }) I2 P8 `" d; P$ V$ Y3 c
8 ^2 L6 a2 F& e$ ]" U# e/ }' K" s d: H
9 p5 C' j& O; g* v& Q- `6 \4 m% R! N[Python] 纯文本查看 复制代码 # 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")
# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan
# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
"""
将nc文件里面的时间格式 从cftime 转换到 datetime格式
:param cftime:
:param units:
:param format:
:return:
"""
return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)
clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4] % u# w: `0 ?+ B# d! [) d
) ^- K" h) B3 X) x2 u: x3. 计算风速数据
* m. J; l- k) Z
4 @+ Q* e& b! w& j. T/ e: w7 u- n5 p6 ?, y; e, @5 i; R8 @
[Python] 纯文本查看 复制代码 windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])
time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed + S- s% \. u/ a$ F
7 Q% R" C: P ~. W0 R& d
3 P. i% w9 O4 ~1 o- t1 ?7 N
4 I1 E; y; L6 n! I4. 年度数据可视化
6 Z5 M# e0 n/ ^6 E- Q! _( T4 e# @1 Y& U+ V
) ~/ t& U5 J U7 I# J[Python] 纯文本查看 复制代码 year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
# year_data
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(year_data['time'])
#
#
for i in range(year_data.shape[0]):
ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
#
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各年平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
( |* X8 ~, X A/ d$ S+ G, p
I( s/ ^$ ?- X( ]6 M9 ?6 i# k0 c
) o" t* k9 B" j& W; r" q0 P% y6 ~2 I$ K d& H: f( n* R, \, k4 m
5. 月维度数据可视化
. p8 Q0 }- Z+ Z[Python] 纯文本查看 复制代码 month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(month_data['time'])
_ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])
for i in range(month_data.shape[0]):
ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各月平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
fig.savefig("month_plot.png")
! ^7 C/ g0 ^" Q& X) L8 T8 ]. f7 O
& \( w$ t+ M% p7 D; N( a. e; d% f
$ }! v# L5 Z$ u S7 n6.天维度数据可视化7 q& v1 s8 ^. V0 b7 k
- 计算天数据. `6 v9 _( M; E/ g) K2 q5 D3 D& v
+ y; B& `+ x5 I8 O0 `: N9 q
[Python] 纯文本查看 复制代码 day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
day_data['time'] = pd.to_datetime(day_data['time'])
day_data = day_data.set_index('time')
day_data.head()- 可视化
5 k1 ~; _4 b* R8 i" s
) {/ {# _2 w m
[Python] 纯文本查看 复制代码 # day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png') 4 ?" ~( `9 K: A) g' W' H
! `; Y# R) p5 P3 Q/ \1 o* q8 m, b6 O9 [
, g+ D% S+ ~! O7 k( h( H5 }
1.天维度数据做趋势拆解9 E- y7 S7 F7 N, g D6 j/ g! ?4 H
# U& h( u6 h6 G J M[Python] 纯文本查看 复制代码 # 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}
# 画图
with plt.style.context('classic'):
fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)
def plot_decompose(result, ax, index, title, fontdict=font):
ax[0, index].set_title(title, fontdict=fontdict)
result.observed.plot(ax=ax[0, index])
ax[0, index].set_ylabel("Observed")
result.trend.plot(ax=ax[1, index])
ax[1, index].set_ylabel("Trend")
result.seasonal.plot(ax=ax[2, index])
ax[2, index].set_ylabel("Seasonal")
result.resid.plot(ax=ax[3, index])
ax[3, index].set_ylabel("Resid")
plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
fig.savefig('decompose.png')
. U |6 p8 _1 H
2 O6 c6 @) e5 L' u/ D
# K9 u: y' X" u6 ?! g" c/ u: v. R5 O/ Q
2 B J; [ x7 g
7 a6 B9 }& D+ d5 G
|