[数据处理] 从nc文件中提取风速数据并且进行时间序列分析

[复制链接]
                                   本文目的
  • 介绍了如何从nc文件中,提取风速数据;
  • 介绍如何将风速数据转换成时间序列;
  • 简单的时间序列的趋势拆解(首发)。
    3 I8 J4 _% ^1 b0 ~
    2 D: N: f/ T" r0 N  i4 y$ l6 J9 t2 ~
代码链接

代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS

! b: K* c* g$ G/ b8 B/ W# \6 V

过程介绍
# I; c) e' C- v
' k6 T5 \# p' J

" ^* v. Q: X- x9 [0 `$ S6 Y
1. 导入包
3 j; w3 P* |5 |/ w* `& t! b3 s0 Z
: V% ^0 N7 \- `: J$ s
[Python] 纯文本查看 复制代码
# 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc  # 处理nc数据
from netCDF4 import num2date  # 处理nc数据
import geopandas as gpd  # 处理网格数据,shp之类的
import rasterio  # 处理tiff文件
from shapely.geometry import Point  # gis的一些逻辑判断
from cartopy import crs as ccrs  # 设置投影坐标系等
from tqdm import tqdm  # 打印进度条
from joblib import Parallel, delayed  # 并行
import platform  # 检测系统

tqdm.pandas()

# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
    plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
    plt.rcParams["font.family"] = 'SimHei'
else:
    pass

0 p8 V: U# Z4 Y7 T3 H/ w- J
" ?' ]) l! v4 \+ z* E, A

; Y' X# r: i& P/ U: r. \2.导入数据 处理数据/ C2 s. b5 F' N" O

0 @  C$ t3 A- X8 \7 H' G
1 T- `' e, l' X) B& I( S
[Python] 纯文本查看 复制代码
# 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")

# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan


# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
    """
    将nc文件里面的时间格式 从cftime 转换到 datetime格式
    :param cftime:
    :param units:
    :param format:
    :return:
    """
    return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)

clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]

& c! N: Q! A, S; |3 ^& o0 w* b/ s0 Y' V7 ?, s+ Q1 w  X, `
3. 计算风速数据
7 ^& ]/ s" ^, }. j
1 C) B$ s+ m; p' R

3 W6 H8 r( Y  P5 @
[Python] 纯文本查看 复制代码
windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])

time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed
, }9 T$ `2 t# m, {% X. {1 E- h9 L  I% C
6b7fd110a68e6d3fd40460ccdd7a810b.png
& A- `4 g& A) a) t% n) q+ G- b* z

6 k. ?# u7 p( l6 z! y

" \/ y( G3 ?* L, S9 i0 f4. 年度数据可视化+ z4 ?, Q' K9 M

5 h% S0 M8 U: ~; d" f
, ?" p% h  P5 _
[Python] 纯文本查看 复制代码
year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

# year_data

with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(year_data['time'])
    #
    #
    for i in range(year_data.shape[0]):
        ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
    #
    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各年平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
) N4 G/ x2 c( F2 Q: {
952d93a401a01cd1fa10be892b8b64d6.png

% W2 ], i* D4 H0 v8 q! O1 O; m" P+ r, B1 K& }/ l
. m+ }+ ~# ^# |
5. 月维度数据可视化, i& b' e7 ]9 X( H9 ^+ t
[Python] 纯文本查看 复制代码
month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()


with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(month_data['time'])
    _ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])


    for i in range(month_data.shape[0]):
        ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))

    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各月平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
    fig.savefig("month_plot.png")
1 ^: f" b" x* {1 `+ o* p
a520cff3361647efbb668c89005a5570.png

1 p+ ^7 f; d$ V5 t9 N1 D

0 H: v8 G. N$ `( m7 `
# e% r) c" ^6 T
6.天维度数据可视化% W0 _+ n6 V. _
  • 计算天数据) S% R3 |& Y7 e3 N, p

    9 A/ n0 z3 q/ ^# [, Y( |
[Python] 纯文本查看 复制代码
day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

day_data['time'] = pd.to_datetime(day_data['time'])

day_data = day_data.set_index('time')
day_data.head()
  • 可视化
    1 o9 g# s' i1 I& I4 }: [" d2 h
    2 N! l% N; a( x3 @
[Python] 纯文本查看 复制代码
# day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')

5 U4 ~, ~( J0 u$ F" L+ X! a# C5 y# n0 m& H% i

7 q1 O1 b  L3 M2 s
053571827f212c867e38f40c8aa49ca5.png

. n  J2 O/ j3 g8 e9 \* V  s1.天维度数据做趋势拆解  R( J+ Y! z7 Q, L
; o3 B0 T$ ]2 K
[Python] 纯文本查看 复制代码
# 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
        'color': 'darkred',
        'weight': 'normal',
        'size': 16,
        }
# 画图

with plt.style.context('classic'):
    fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)


    def plot_decompose(result, ax, index, title, fontdict=font):
        ax[0, index].set_title(title, fontdict=fontdict)
        result.observed.plot(ax=ax[0, index])
        ax[0, index].set_ylabel("Observed")

        result.trend.plot(ax=ax[1, index])
        ax[1, index].set_ylabel("Trend")

        result.seasonal.plot(ax=ax[2, index])
        ax[2, index].set_ylabel("Seasonal")

        result.resid.plot(ax=ax[3, index])
        ax[3, index].set_ylabel("Resid")


    plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
    plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
    fig.savefig('decompose.png')

  D! @/ P, J, y" C$ s* J* P
cd8468c3910ecbcfac542ed3328df432.jpeg                 $ B: }( N( E2 h: [0 X" q; o* R! ^* Z

+ C2 @* o* I7 H5 e
4 N4 |# V% g1 _! ?9 o; h  N; t# s" U6 t
2 s& C# O0 E% ]1 t2 X" Q* @
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
尖叫的土豆
活跃在2025-1-12
快速回复 返回顶部 返回列表