本文目的- 介绍了如何从nc文件中,提取风速数据;
- 介绍如何将风速数据转换成时间序列;
- 简单的时间序列的趋势拆解(首发)。+ A3 Q) J/ {5 L4 |7 i* R3 X. a
" o u" s. T: i# q; U8 s 代码链接代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS。
" h9 _/ p; R/ D- I) \+ F2 ]& Y
过程介绍 B# ~* d; S/ |. `
0 N# w" y5 d* G9 B
* L% P& f- _8 P8 I7 X5 @1. 导入包5 d* R' V/ h+ w2 ?6 C, L! ~
6 m/ M, T! |' _, M; l$ y[Python] 纯文本查看 复制代码 # 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc # 处理nc数据
from netCDF4 import num2date # 处理nc数据
import geopandas as gpd # 处理网格数据,shp之类的
import rasterio # 处理tiff文件
from shapely.geometry import Point # gis的一些逻辑判断
from cartopy import crs as ccrs # 设置投影坐标系等
from tqdm import tqdm # 打印进度条
from joblib import Parallel, delayed # 并行
import platform # 检测系统
tqdm.pandas()
# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
plt.rcParams["font.family"] = 'SimHei'
else:
pass
! S6 e+ R8 j. N; L* u2 p! h( a: v# N, ?" i
+ W8 z, I: T$ d7 I% J8 H
2.导入数据 处理数据" j( _2 a! t* Z& H
5 G9 e/ d1 R! f* F2 C4 s1 G
/ x8 ^0 P/ s! ~ k; z! H[Python] 纯文本查看 复制代码 # 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")
# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan
# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
"""
将nc文件里面的时间格式 从cftime 转换到 datetime格式
:param cftime:
:param units:
:param format:
:return:
"""
return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)
clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]
/ Y! ^5 G& n5 e6 E, ?" S2 ^; v' E. U7 \; d& {% ?
3. 计算风速数据6 l6 }* ?& n/ L: O, e
. Z7 m4 ?0 @0 r4 W! F- q- X0 k
/ g b5 W0 q" G" ^& P3 V[Python] 纯文本查看 复制代码 windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])
time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed
; A* s. _; q k! Y# T! t
# _1 D2 ~ v( e) x( ~) s0 _4 h T
1 I3 @7 S: m3 ~6 J& N) q# C4 v$ U8 v9 H
4. 年度数据可视化" J/ w$ {* g# m4 u: U( N- f
, a, j) H. L% \( n6 ?. [0 Z
8 B! ^' D) }1 R+ G1 T
[Python] 纯文本查看 复制代码 year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
# year_data
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(year_data['time'])
#
#
for i in range(year_data.shape[0]):
ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
#
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各年平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
, r% q; p7 d+ q1 G% V
. l" w' e3 K4 {$ A7 S( y3 A( F- L+ [" Q% \ h
, M0 I3 p9 A& H7 ]* O1 k# H5. 月维度数据可视化* d' @8 _/ T$ y. W) ^
[Python] 纯文本查看 复制代码 month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(month_data['time'])
_ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])
for i in range(month_data.shape[0]):
ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各月平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
fig.savefig("month_plot.png")
; p4 m. ?" a) N9 f6 u& Q4 ^' N+ \' F1 K7 I, c
0 {& s% z& Y- c% I$ ^# ~; A
# F% A j- ?+ y* C" R8 a3 L
6.天维度数据可视化
3 |7 c6 t. f4 e& X5 [/ T- 计算天数据
4 C5 b7 _1 K" t: ?' w, H% D8 v; e" q) @( W9 f) _8 C* A
[Python] 纯文本查看 复制代码 day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
day_data['time'] = pd.to_datetime(day_data['time'])
day_data = day_data.set_index('time')
day_data.head() - 可视化
' U# y4 q( Z/ x" \7 P
5 } h J% B7 j: U4 Y) ^2 r! D- ^
[Python] 纯文本查看 复制代码 # day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')
4 _' \" j4 F. F$ t: d% |2 o: ]% ^' Y& h7 e! c( q
$ Q& K. o5 _( U4 H" E) W, [0 e- _" n7 r, M5 o5 Y/ k
1.天维度数据做趋势拆解- W! h7 u. _$ U8 c4 V
- ~+ f* t. Z9 B1 J5 u6 c& Y[Python] 纯文本查看 复制代码 # 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}
# 画图
with plt.style.context('classic'):
fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)
def plot_decompose(result, ax, index, title, fontdict=font):
ax[0, index].set_title(title, fontdict=fontdict)
result.observed.plot(ax=ax[0, index])
ax[0, index].set_ylabel("Observed")
result.trend.plot(ax=ax[1, index])
ax[1, index].set_ylabel("Trend")
result.seasonal.plot(ax=ax[2, index])
ax[2, index].set_ylabel("Seasonal")
result.resid.plot(ax=ax[3, index])
ax[3, index].set_ylabel("Resid")
plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
fig.savefig('decompose.png')
8 ?5 y6 k* q" w7 x* [
7 g, J4 r4 _! c2 |7 B
. j1 C: d9 T6 E# w7 y" a. I. P* ]; y( C1 x
& |7 u0 {' {$ n7 `/ s1 Z$ `; ~
& x7 d' O) ?: F, N. w9 a |