本文目的- 介绍了如何从nc文件中,提取风速数据;
- 介绍如何将风速数据转换成时间序列;
- 简单的时间序列的趋势拆解(首发)。. V2 g. Z% U" g, C) J
" u; M" G5 I, h 代码链接代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS。
, Q R4 h* O; _" `8 N9 `" F
过程介绍
* I$ S+ L, [, K/ n
% J; H2 g1 D) W 2 w- X3 l; m; x' w& @; [" y! h
1. 导入包/ ^" s2 M% Q( H4 p: T
" X+ B$ [1 C: S3 K6 q
[Python] 纯文本查看 复制代码 # 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc # 处理nc数据
from netCDF4 import num2date # 处理nc数据
import geopandas as gpd # 处理网格数据,shp之类的
import rasterio # 处理tiff文件
from shapely.geometry import Point # gis的一些逻辑判断
from cartopy import crs as ccrs # 设置投影坐标系等
from tqdm import tqdm # 打印进度条
from joblib import Parallel, delayed # 并行
import platform # 检测系统
tqdm.pandas()
# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
plt.rcParams["font.family"] = 'SimHei'
else:
pass ) D8 ]' W* g L
$ ]* j& x! w! i6 y8 C" O$ s( _; j ]* }( y! Z( @/ q8 b% e* }
2.导入数据 处理数据
" x1 F* y9 w- P3 W4 q1 t2 D8 Z& S2 k" E* ]" ]
- J* d f0 w2 e- G[Python] 纯文本查看 复制代码 # 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")
# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan
# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
"""
将nc文件里面的时间格式 从cftime 转换到 datetime格式
:param cftime:
:param units:
:param format:
:return:
"""
return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)
clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]
& x) W7 @- Q- S+ |) X5 i
0 }1 l q' E8 h a. x- u3 r3. 计算风速数据& J: k, d4 q: m. ^! P2 f
& n' `! Y- @1 W" g B" G3 N. T0 ~
4 s& y* P- y, S4 s }% R! X
[Python] 纯文本查看 复制代码 windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])
time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed
7 A0 L5 W4 I, @. a( {- u
7 U. J+ ~: K1 @3 S+ o
3 k! T2 I; c; d0 a& t, q g0 F" s* U* n
4. 年度数据可视化
1 P3 I$ ?1 d/ ?# P
. n+ @2 B$ r m, H/ p; o0 ?
, _) `2 u( Y! y[Python] 纯文本查看 复制代码 year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
# year_data
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(year_data['time'])
#
#
for i in range(year_data.shape[0]):
ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
#
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各年平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
7 }7 p" Z# c2 N& k
% G; t: V8 L9 a' N" T
% N) i0 F% H, }$ E: R: O0 P4 i
, [5 z( n9 ~( G! E5 k2 i. ?' Z7 s" [5. 月维度数据可视化# w7 P4 c4 j2 ?+ X, k" x: `; \9 _& `
[Python] 纯文本查看 复制代码 month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(month_data['time'])
_ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])
for i in range(month_data.shape[0]):
ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各月平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
fig.savefig("month_plot.png")
! ? K! X k, x/ j) B! A5 h6 Q$ x6 h1 w
+ I( w2 \# ^3 a, }7 Q) I W / U: O* k, V" Y" c" G- l
6.天维度数据可视化3 T( F( I g! b) z% v* p: u h" t, i
- 计算天数据' f2 A. W; `& ~, W6 p
" {* G' m+ c+ i, W$ v& ^
[Python] 纯文本查看 复制代码 day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
day_data['time'] = pd.to_datetime(day_data['time'])
day_data = day_data.set_index('time')
day_data.head() - 可视化1 S1 r$ M$ _$ H8 f# x
( M, U2 c8 i8 }& @4 Q5 V
[Python] 纯文本查看 复制代码 # day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png') 6 J- }0 B9 W7 j0 I; A
# o$ h8 T. m0 U$ Y, C& \
/ \$ y* ` R# G4 B0 y) J5 z: w! N* z
1.天维度数据做趋势拆解+ o: s/ _! U2 u9 S. o
1 Z$ s/ F5 E: G) Q9 ^
[Python] 纯文本查看 复制代码 # 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}
# 画图
with plt.style.context('classic'):
fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)
def plot_decompose(result, ax, index, title, fontdict=font):
ax[0, index].set_title(title, fontdict=fontdict)
result.observed.plot(ax=ax[0, index])
ax[0, index].set_ylabel("Observed")
result.trend.plot(ax=ax[1, index])
ax[1, index].set_ylabel("Trend")
result.seasonal.plot(ax=ax[2, index])
ax[2, index].set_ylabel("Seasonal")
result.resid.plot(ax=ax[3, index])
ax[3, index].set_ylabel("Resid")
plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
fig.savefig('decompose.png')
6 R" p9 p2 a% O
5 k7 t* O' X* l/ I& ^9 g ; d" ]" t$ t @5 x! w
- W( i& n! U) `7 }1 Y
9 R- @" [0 b6 n) F
! b: [7 z8 n ~" K |