[数据处理] 从nc文件中提取风速数据并且进行时间序列分析

[复制链接]
                                   本文目的
  • 介绍了如何从nc文件中,提取风速数据;
  • 介绍如何将风速数据转换成时间序列;
  • 简单的时间序列的趋势拆解(首发)。. V2 g. Z% U" g, C) J

    " u; M" G5 I, h
代码链接

代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS


, Q  R4 h* O; _" `8 N9 `" F

过程介绍

* I$ S+ L, [, K/ n

% J; H2 g1 D) W
2 w- X3 l; m; x' w& @; [" y! h
1. 导入包/ ^" s2 M% Q( H4 p: T
" X+ B$ [1 C: S3 K6 q
[Python] 纯文本查看 复制代码
# 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc  # 处理nc数据
from netCDF4 import num2date  # 处理nc数据
import geopandas as gpd  # 处理网格数据,shp之类的
import rasterio  # 处理tiff文件
from shapely.geometry import Point  # gis的一些逻辑判断
from cartopy import crs as ccrs  # 设置投影坐标系等
from tqdm import tqdm  # 打印进度条
from joblib import Parallel, delayed  # 并行
import platform  # 检测系统

tqdm.pandas()

# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
    plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
    plt.rcParams["font.family"] = 'SimHei'
else:
    pass
) D8 ]' W* g  L

$ ]* j& x! w! i6 y8 C" O$ s
( _; j  ]* }( y! Z( @/ q8 b% e* }
2.导入数据 处理数据
" x1 F* y9 w- P3 W4 q1 t2 D8 Z& S2 k" E* ]" ]

- J* d  f0 w2 e- G
[Python] 纯文本查看 复制代码
# 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")

# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan


# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
    """
    将nc文件里面的时间格式 从cftime 转换到 datetime格式
    :param cftime:
    :param units:
    :param format:
    :return:
    """
    return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)

clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]

& x) W7 @- Q- S+ |) X5 i
0 }1 l  q' E8 h  a. x- u3 r3. 计算风速数据& J: k, d4 q: m. ^! P2 f
& n' `! Y- @1 W" g  B" G3 N. T0 ~
4 s& y* P- y, S4 s  }% R! X
[Python] 纯文本查看 复制代码
windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])

time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed

7 A0 L5 W4 I, @. a( {- u
6b7fd110a68e6d3fd40460ccdd7a810b.png

7 U. J+ ~: K1 @3 S+ o
3 k! T2 I; c; d
0 a& t, q  g0 F" s* U* n
4. 年度数据可视化
1 P3 I$ ?1 d/ ?# P
. n+ @2 B$ r  m, H/ p; o0 ?

, _) `2 u( Y! y
[Python] 纯文本查看 复制代码
year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

# year_data

with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(year_data['time'])
    #
    #
    for i in range(year_data.shape[0]):
        ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
    #
    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各年平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
7 }7 p" Z# c2 N& k
952d93a401a01cd1fa10be892b8b64d6.png

% G; t: V8 L9 a' N" T
% N) i0 F% H, }$ E: R: O0 P4 i

, [5 z( n9 ~( G! E5 k2 i. ?' Z7 s" [5. 月维度数据可视化# w7 P4 c4 j2 ?+ X, k" x: `; \9 _& `
[Python] 纯文本查看 复制代码
month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()


with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(month_data['time'])
    _ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])


    for i in range(month_data.shape[0]):
        ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))

    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各月平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
    fig.savefig("month_plot.png")

! ?  K! X  k, x
a520cff3361647efbb668c89005a5570.png
/ j) B! A5 h6 Q$ x6 h1 w

+ I( w2 \# ^3 a, }7 Q) I  W
/ U: O* k, V" Y" c" G- l
6.天维度数据可视化3 T( F( I  g! b) z% v* p: u  h" t, i
  • 计算天数据' f2 A. W; `& ~, W6 p

    " {* G' m+ c+ i, W$ v& ^
[Python] 纯文本查看 复制代码
day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

day_data['time'] = pd.to_datetime(day_data['time'])

day_data = day_data.set_index('time')
day_data.head()
  • 可视化1 S1 r$ M$ _$ H8 f# x
    ( M, U2 c8 i8 }& @4 Q5 V
[Python] 纯文本查看 复制代码
# day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')
6 J- }0 B9 W7 j0 I; A
# o$ h8 T. m0 U$ Y, C& \

/ \$ y* `  R# G4 B0 y
053571827f212c867e38f40c8aa49ca5.png
) J5 z: w! N* z
1.天维度数据做趋势拆解+ o: s/ _! U2 u9 S. o
1 Z$ s/ F5 E: G) Q9 ^
[Python] 纯文本查看 复制代码
# 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
        'color': 'darkred',
        'weight': 'normal',
        'size': 16,
        }
# 画图

with plt.style.context('classic'):
    fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)


    def plot_decompose(result, ax, index, title, fontdict=font):
        ax[0, index].set_title(title, fontdict=fontdict)
        result.observed.plot(ax=ax[0, index])
        ax[0, index].set_ylabel("Observed")

        result.trend.plot(ax=ax[1, index])
        ax[1, index].set_ylabel("Trend")

        result.seasonal.plot(ax=ax[2, index])
        ax[2, index].set_ylabel("Seasonal")

        result.resid.plot(ax=ax[3, index])
        ax[3, index].set_ylabel("Resid")


    plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
    plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
    fig.savefig('decompose.png')
6 R" p9 p2 a% O
cd8468c3910ecbcfac542ed3328df432.jpeg                
5 k7 t* O' X* l/ I& ^9 g
; d" ]" t$ t  @5 x! w

- W( i& n! U) `7 }1 Y
9 R- @" [0 b6 n) F
! b: [7 z8 n  ~" K
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
尖叫的土豆
活跃在2024-12-1
快速回复 返回顶部 返回列表