收藏本站 劰载中...网站公告 | 吾爱海洋论坛交流QQ群:835383472

[数据处理] 从nc文件中提取风速数据并且进行时间序列分析

[复制链接]
                                   本文目的
  • 介绍了如何从nc文件中,提取风速数据;
  • 介绍如何将风速数据转换成时间序列;
  • 简单的时间序列的趋势拆解(首发)。
    3 h2 G, ^  m+ V6 i) S. r! v( o

    # J7 _; c  s* H0 b% l" L* I
代码链接

代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS

4 ?( A% W$ l5 u7 i6 w7 d& E' S# p

过程介绍
- o" s" U4 x2 v( w

9 G: x" t/ t3 _7 G
% Q: h% }; v3 f; f8 Q
1. 导入包2 e  {+ Z; D3 B7 N, l3 F

1 y( ~) r" Q, J0 D
[Python] 纯文本查看 复制代码
# 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc  # 处理nc数据
from netCDF4 import num2date  # 处理nc数据
import geopandas as gpd  # 处理网格数据,shp之类的
import rasterio  # 处理tiff文件
from shapely.geometry import Point  # gis的一些逻辑判断
from cartopy import crs as ccrs  # 设置投影坐标系等
from tqdm import tqdm  # 打印进度条
from joblib import Parallel, delayed  # 并行
import platform  # 检测系统

tqdm.pandas()

# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
    plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
    plt.rcParams["font.family"] = 'SimHei'
else:
    pass

6 j! X1 ^, C$ _, X. C
8 T2 l) @. X# G7 X' _7 M

3 T) `$ X+ U: T9 ~$ i7 Z" t2.导入数据 处理数据8 e3 M5 ~, F1 q* }3 m

7 k6 t9 R3 \' g/ K5 `! u
, |" Y6 d9 J$ ~' z
[Python] 纯文本查看 复制代码
# 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")

# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan


# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
    """
    将nc文件里面的时间格式 从cftime 转换到 datetime格式
    :param cftime:
    :param units:
    :param format:
    :return:
    """
    return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)

clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]
" ]6 T  }. e; \

* `( d7 _3 p! W3. 计算风速数据
- p  x/ E" u( K
" L- L7 r6 Q4 \# z4 q- V0 ~  Y
/ H+ z# E8 A  H: r' Z
[Python] 纯文本查看 复制代码
windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])

time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed

3 M( X6 b( }% i# M
6b7fd110a68e6d3fd40460ccdd7a810b.png
9 K8 W5 ?; S; Q4 p8 t

7 Q* Y) @/ C4 d; m: J) n/ h
) l% k% R0 O7 j9 w
4. 年度数据可视化: {: k1 l3 i* D, t5 K! n! r/ @

# A9 |) F' `! |. _

" H( A, ^  j; Q( @+ t  D1 m5 a% T
[Python] 纯文本查看 复制代码
year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

# year_data

with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(year_data['time'])
    #
    #
    for i in range(year_data.shape[0]):
        ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
    #
    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各年平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
4 `8 t- U) G, N9 @6 w1 M
952d93a401a01cd1fa10be892b8b64d6.png

7 u9 t  q# W# M1 Z8 i- G; n6 [( i: e  p( ~( B# L

: a1 q: n1 e/ W" `& t5. 月维度数据可视化
; b  d) N8 c/ y/ _, @  w) n2 _
[Python] 纯文本查看 复制代码
month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()


with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(month_data['time'])
    _ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])


    for i in range(month_data.shape[0]):
        ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))

    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各月平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
    fig.savefig("month_plot.png")

; h9 ^$ S$ j; c
a520cff3361647efbb668c89005a5570.png

5 F4 @: M1 x* J3 o3 R
2 s9 f; x) G* _' L
  N2 U$ t  X' E  I% c( p
6.天维度数据可视化/ A4 [: {0 z9 K! x
  • 计算天数据
    1 m9 m% a) @1 U8 P- u# K/ @9 `
    . w) X0 Q! q4 c) Z" I6 [" o
[Python] 纯文本查看 复制代码
day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

day_data['time'] = pd.to_datetime(day_data['time'])

day_data = day_data.set_index('time')
day_data.head()
  • 可视化1 N/ j4 a* E/ N8 i8 Y. ^
      C4 v3 k1 ^- F) Q
[Python] 纯文本查看 复制代码
# day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')
* v4 @0 ~9 w2 e% k

$ Y( d1 Z" P' D, |: H* \* d( i3 |

9 @/ t5 B7 ^+ b
053571827f212c867e38f40c8aa49ca5.png

: k! G* ?3 q5 C! |) V1.天维度数据做趋势拆解
/ [9 }3 D$ K* H9 }
5 Q% K* p0 L" w0 c; \
[Python] 纯文本查看 复制代码
# 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
        'color': 'darkred',
        'weight': 'normal',
        'size': 16,
        }
# 画图

with plt.style.context('classic'):
    fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)


    def plot_decompose(result, ax, index, title, fontdict=font):
        ax[0, index].set_title(title, fontdict=fontdict)
        result.observed.plot(ax=ax[0, index])
        ax[0, index].set_ylabel("Observed")

        result.trend.plot(ax=ax[1, index])
        ax[1, index].set_ylabel("Trend")

        result.seasonal.plot(ax=ax[2, index])
        ax[2, index].set_ylabel("Seasonal")

        result.resid.plot(ax=ax[3, index])
        ax[3, index].set_ylabel("Resid")


    plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
    plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
    fig.savefig('decompose.png')
( ?# e' s, y. l! i+ o, i  o) z
cd8468c3910ecbcfac542ed3328df432.jpeg                
4 e- v' k/ x# |/ Q9 ?
6 W; @( c  k& [3 U

( U7 v3 ^( I5 O% O: U, \; t1 t, L* n* S$ l& ]

; S$ S, J' W$ T* Z  I6 O/ \
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
尖叫的土豆
活跃在3 天前
快速回复 返回顶部 返回列表