$ P1 ~3 J7 N/ _% B% K i 生物泵和温盐环流对海洋化学成分的影响。图中显示了有机物、溶解氧、硝酸盐和无机碳含量的典型垂直剖面。碳循环-C
) F* A3 w) C8 O% ]+ z' \5 w 碳支出与碳收入6 [* X2 r6 o5 m" L2 |4 o5 N; X+ \
/ \. ~8 h+ ]% Z1 W' m+ I0 I( b
7 k4 v' g# K/ J" x. u3 z* n 海洋生物泵, The marine biological pump ,是指在海洋的生态环境中以生物或生物行为为动力,将碳元素从海洋表面向深层传递的过程 ) V& a0 o4 B: [' }" N- N
海洋生物泵(来源:百度百库)生物泵(Biological pump):Particulate (颗粒有机质)organic matter (POM) and inorganic particles of biogenic origin sinking from surface water to ocean interior : H; }# z9 W' H
1 N! |& P/ s( t! F+ e8 W Particulate Organic Carbon (POC颗粒有机碳): 7 D7 [' U$ k/ f9 L) U; ?
颗粒有机物形成于海水表层透光带中(euphotic zone) ' X5 H2 i0 h, N; C7 c
POC在沉降过程中不断的降解 . P4 k6 S8 C2 j- q( B* u9 o Y* ]
, [1 }0 ^% r3 P) C 硫循环-S
r4 I, L0 m7 C/ K) L 陆地和海洋中的硫通过生物分解、火山爆发等进入大气;大气中的硫通过降水和沉降、表面吸收等作用,回到陆地和海洋;地表径流又带着硫进入河流,输往海洋,并沉积于海底。在人类开采和利用含硫的矿物燃料和金属矿石的过程中,硫被氧化成为二氧化硫(SO2)和还原成为硫化氢(H2S)进入大气。硫还随着酸性矿水的排放而进入水体或土壤。
/ H- d/ w) |$ z, z) W ' M5 W# m6 B& ], {% X
自然界中硫的最大储存库在岩石圈,在沉积岩、变质岩和火成岩三类岩石中总含量达294800×1020克。硫在水圈中的储存量也较大,在海水中含13480×1020克,在极地冰帽、冰山和陆地冰川中含278×1020克,但在地下水、地面水、土壤圈、大气圈中含量均较小。通过有机物分解释放H2S气体或可溶硫酸盐、火山喷发(H2S、SO42-、SO2)等过程使硫变成可移动的简单化合物进入大气、水或土壤中。
+ B. r3 X3 D) D% M 土壤中微生物可将含硫有机物质分解为硫化氢,硫黄细菌和硫化细菌可将硫化氢进一步转变为元素硫或硫酸盐,许多兼性或嫌气性微生物又可将硫酸盐转化为硫化氢。因此,在土壤和水体底质中,硫因氧化还原电位不同而呈现不同的化学价态。土壤和空气中硫酸盐、硫化氢和二氧化硫可被植物吸收,每年全球植物吸收硫总量约为15×1018克,然后沿着食物链在生态系统中转移。陆地上可溶价态的硫酸盐通过雨水淋洗,每年由河流携入海洋地硫总量达132×1032克。海水和海洋沉积物中积蓄着最大量对生物有效态硫,总量达16480×1020克。由于有机物燃烧、火山喷发和微生物氨化及反硫化作用等,也有少量硫以H2S、SO2和硫酸盐气溶胶状态存在于大气中。近来由于工业发展,化石燃料的燃烧增加,每年燃烧排入大气的SO2量高达147×106吨,影响了生物圈中硫的循环。
+ H2 ~2 U+ m, _5 ~ 磷循环-P
4 j2 a7 N1 j J* M& z 磷循环是指磷元素在生态系统和环境中运动、转化和往复的过程。磷灰石构成了磷的巨大储备库,含磷灰石岩石的风化,将大量磷酸盐转交给了陆地上的生态系统。并且与水循环同时发生的是,大量磷酸盐被淋洗并被带入海洋。在海洋中,它们使近海岸水中的磷含量增加,并供给浮游生物及其消费者的需要。
/ q1 B1 F4 l7 W 表层海水磷含量自然界的磷循环的基本过程是:岩石和土壤中的磷酸盐由于风化和淋溶作用进入河流,然后输入海洋并沉积于海底,直到地质活动使它们暴露于水面,再次参加循环。这一循环需若干万年才能完成。 8 P' j: b2 d3 B* R
$ C' Q9 \+ x( j" X7 Y+ F; _
e! ]( k& {5 z+ U 氮循环-N
S: J4 D ]' k0 i Y0 s 氮循环是指氮在自然界中的循环转化过程,是生物圈内基本的物质循环之一,如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。 % N: V1 D$ K% M! H( b
表层海水氮含量构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。 ! s0 X$ x/ H) h9 k6 e ]
植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮,这一过程为生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮化合物被微生物分解后形成氨,这一过程是氨化作用。 [1] 在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程被称作反硝化作用。固氮作用(nitrogen fixation) 是分子态氮被还原成氨和其他含氮化合物的过程。自然界氮(N2)的固定有两种方式:一种是非生物固氮,即通过闪电、高温放电等固氮,这样形成的氮化物很少;二是生物固氮,即分子态氮在生物体内还原为氨的过程。大气中90%以上的分子态氮都是通过固氮微生物的作用被还原为氨的。由此可见,由于微生物的活动,土壤已成为氮循环中最活跃的区域。 ; x, h5 `/ p% M! T
\! Z5 Y7 B; a# ]% P. p/ A5 b( H- u 8 ^. R2 b6 E7 v4 o; W
关于氧化还原反应6 `/ _' Q8 K, `6 \: ~ O- p
沉积物的氧化还原分带
# K5 L& A% i" Q$ d# F2 J
7 |" p. A; ~3 h0 w" N# Q3 Z' R( y% L- B
. @. d0 a7 m8 E; ]) U& \ |