) G( H2 @1 d# y! R# [. T' [" L 在我们科研、工作中,将数据完美展现出来尤为重要。
1 H% Y' u, M+ k0 D$ D 数据可视化是以数据为视角,探索世界。我们真正想要的是 — 数据视觉,以数据为工具,以可视化为手段,目的是描述真实,探索世界。
! F2 K# u# k: \$ Y 下面介绍一些数据可视化的作品(包含部分代码),主要是地学领域,可迁移至其他学科。
l- Q! c7 y. ^$ Z m( I
Example 1 :散点图、密度图(Python)
0 O6 v5 D8 u5 I+ Q# H! B/ W import numpy as np
, a2 S5 r( V7 f import matplotlib.pyplot as plt
4 P0 Y: u" ~% l( T- Y p
# 创建随机数
: F) w0 S* }! _2 ]- q3 f n = 100000
/ h, F, K) S# }* J2 V" P/ f x = np.random.randn(n)
; Y# C0 w8 N. X' j! f4 e/ J
y = (1.5 * x) + np.random.randn(n)
8 v" r3 t; }/ V2 V2 `; [ fig1 = plt.figure()
5 f! ]0 S0 S' I% a3 k- k) t$ m plt.plot(x,y,.r)
0 |0 y h* n+ u4 i8 K" t
plt.xlabel(x)
+ \3 A; n3 E5 U! q! F! ~# \
plt.ylabel(y)
& x0 o8 X( o" F$ q
plt.savefig(2D_1V1.png,dpi=600)
/ S, U& Y0 `- ?4 B, b- ?( m+ U! V1 v
nbins = 200
4 _ ^( E4 l# }9 q H, xedges, yedges = np.histogram2d(x,y,bins=nbins)
7 {) ^/ J, ~% |% i+ e1 u& }( O
# H needs to be rotated and flipped
: G' \3 j6 x/ h7 T/ N" }; W6 ? H = np.rot90(H)
+ m6 `1 e$ W0 s, f& w) d: G8 f H = np.flipud(H)
# E0 T: D% @- R# c. g # 将zeros mask
0 E- w7 j: J9 f& b+ |4 C
Hmasked = np.ma.masked_where(H==0,H)
! w& s* |9 x$ Z/ `6 I) |
# Plot 2D histogram using pcolor
; R* `6 s. @. H fig2 = plt.figure()
8 t5 F8 o; r: E9 f- t plt.pcolormesh(xedges,yedges,Hmasked)
" z/ _, x. s6 D# R2 d plt.xlabel(x)
8 L9 }; M6 ~' }9 m" B C6 y
plt.ylabel(y)
; N6 i# ]; l& }, F0 I/ R
cbar = plt.colorbar()
) e& O. {4 d& N$ R6 U
cbar.ax.set_ylabel(Counts)
: I5 z% n4 J# l) r% K2 t plt.savefig(2D_2V1.png,dpi=600)
+ W# m" [ b- {4 }+ K) b6 c
plt.show()
; r" x$ s) C/ ~- \5 \7 W4 I: I
* g- X8 U: F* m( M6 ^' K$ y7 U: M
2 ?, Y$ }% b4 q1 r2 ^. c
打开凤凰新闻,查看更多高清图片
3 X' U* F& m$ D. w; [/ R* _
+ ~* W) I' {3 w. O1 V; u& w6 S, ^/ M * ~: C4 B" F% [5 `* ?2 l- A
+ `8 k1 a$ ?3 m' I4 ?
Example 2 :双Y轴(Python)
) o8 W a. u! i3 O, v
import csv
$ ]8 }3 j9 D X, B" r2 ]
import pandas as pd
9 P0 X% M0 c- t, M0 H
import matplotlib.pyplot as plt
3 X9 W# E+ h% W" d8 ~. ]
from datetime import datetime
; |8 P2 I) G k data=pd.read_csv(LOBO0010-2020112014010.tsv,sep=)
- k+ }. n$ i1 m3 A; Y time=data[date [AST]]
$ w3 e) F; N7 i" [6 k" K$ x0 B
sal=data[salinity]
1 a. Q$ N' N) P! z& I+ p6 g
tem=data[temperature [C]]
( e# ^( [8 ~& e5 K print(sal)
9 @: v2 T0 |, |( H+ i4 H
DAT = []
. Q% g, R/ p; u- P2 i3 O for row in time:
; ]' h3 B' p9 {& g) I' g8 V DAT.append(datetime.strptime(row,"%Y-%m-%d %H:%M:%S"))
7 {* A: A3 U3 H6 {5 f* ~ #create figure
8 z+ R2 z, J. L5 s fig, ax =plt.subplots(1)
( O6 ^# l4 K8 ~ # Plot y1 vs x in blue on the left vertical axis.
1 B3 z+ O8 u1 l3 ^) p1 K, n4 J
plt.xlabel("Date [AST]")
. e6 q# e. W* ? x' y6 M$ N plt.ylabel("Temperature [C]", color="b")
- d9 l, k0 {; Z plt.tick_params(axis="y", labelcolor="b")
, Q- {6 X3 W' u
plt.plot(DAT, tem, "b-", linewidth=1)
' ~% F/ ]4 I7 o
plt.title("Temperature and Salinity from LOBO (Halifax, Canada)")
* N* H! i& A6 w: H1 C fig.autofmt_xdate(rotation=50)
2 J% F& X1 N" Y+ V8 d
# Plot y2 vs x in red on the right vertical axis.
, i5 G/ R/ q0 i9 \: {/ O7 H+ O plt.twinx()
1 F _" W/ t' M7 e# p% E. |3 V; K
plt.ylabel("Salinity", color="r")
. r/ G: _$ e/ J3 }8 i, ]
plt.tick_params(axis="y", labelcolor="r")
; W. k9 e3 r9 k$ @0 h7 D plt.plot(DAT, sal, "r-", linewidth=1)
0 F' H- } N! [! \ #To save your graph
, r5 I" \/ G+ o plt.savefig(saltandtemp_V1.png ,bbox_inches=tight)
7 K* \7 M$ ]$ Z. h' R2 ]" S plt.show()
1 ^- \' s* m& K! b& ]
* B/ A7 k& N$ f. a8 |0 @/ h
Example 3:拟合曲线(Python)
- k- T. c+ U* X, w" |
import csv
' c) C4 z0 n1 q/ F& k: z import numpy as np
# ?0 c0 C8 g/ Q- h% H3 k8 d
import pandas as pd
7 z1 u- G/ R- |& K$ g& ]1 A2 D from datetime import datetime
0 ~5 r' ?, R5 O import matplotlib.pyplot as plt
1 e: w( ~ `' }4 o1 E$ @ import scipy.signal as signal
$ V) n6 \% h+ E6 S6 r! ^" @8 `
data=pd.read_csv(LOBO0010-20201122130720.tsv,sep=)
1 R; Y7 K; c3 c) w6 B6 A( c$ }+ @( Z time=data[date [AST]]
$ l' L- P2 [1 L' B' c% ]2 T% t4 j temp=data[temperature [C]]
7 ? U" t* j6 K* \5 `$ T5 h
datestart = datetime.strptime(time[1],"%Y-%m-%d %H:%M:%S")
, p5 e7 C# { m* a' e/ ?9 C+ ~6 v$ m' W
DATE,decday = [],[]
) M w$ C3 w* N+ `2 h" K1 d for row in time:
# G t" l2 e) I* N# X daterow = datetime.strptime(row,"%Y-%m-%d %H:%M:%S")
! W# R, R1 f* M6 s
DATE.append(daterow)
: Z/ k/ \9 z# h; P3 x# x decday.append((daterow-datestart).total_seconds()/(3600*24))
. ?- |7 [) E' I# n% X # First, design the Buterworth filter
; }7 N( j' V' _- P- X0 d8 G' J6 ? N = 2 # Filter order
/ i) h+ `. C) O Wn = 0.01 # Cutoff frequency
5 p t- U9 N$ q
B, A = signal.butter(N, Wn, output=ba)
" Y( o& @5 ~$ a8 t' \- X, |7 x+ n8 i& Q # Second, apply the filter
4 ~( w. `% O: }7 C# t3 C6 S tempf = signal.filtfilt(B,A, temp)
9 I0 f( a2 T% y1 E: R3 r; {5 S # Make plots
; P* [. M ^! \' ^ fig = plt.figure()
2 X3 `4 u& U' F# V2 f
ax1 = fig.add_subplot(211)
9 D' q* y! L7 t+ d% d
plt.plot(decday,temp, b-)
9 u& e6 o& Z# b, O1 q
plt.plot(decday,tempf, r-,linewidth=2)
* S8 g0 ]6 w! ?5 Y5 u' f3 |( M2 ` plt.ylabel("Temperature (oC)")
k; K# ^* m: J
plt.legend([Original,Filtered])
+ ]0 U( p3 t# U0 J' J/ }4 ?
plt.title("Temperature from LOBO (Halifax, Canada)")
% L, c9 r: N& ~! Q9 T( w
ax1.axes.get_xaxis().set_visible(False)
1 F& e4 A, S4 H3 G/ h: t ax1 = fig.add_subplot(212)
; M6 q2 v+ N) s- j: h
plt.plot(decday,temp-tempf, b-)
) Z/ E- L# ]' w1 I
plt.ylabel("Temperature (oC)")
( c# F j4 y. S& d- X+ G. v plt.xlabel("Date")
3 g$ A) k$ N" f+ _7 w
plt.legend([Residuals])
/ y* }3 f4 T; D9 B plt.savefig(tem_signal_filtering_plot.png, bbox_inches=tight)
4 Z7 L& [4 Q+ i: }7 [/ s) v plt.show()
$ J' ~3 |4 u) u0 s ]; p
% a9 a3 D: W' x J# u Example 4:三维地形(Python)
/ D* S; ?6 O2 `
# This import registers the 3D projection
& F7 Y( a3 X* a from mpl_toolkits.mplot3d import Axes3D
2 B. E% d1 N% l+ J N7 o from matplotlib import cbook
9 J! \+ G3 t0 ` from matplotlib import cm
8 x1 M+ E' F" | }- w
from matplotlib.colors import LightSource
, J# c8 [. ]7 I. H _( z
import matplotlib.pyplot as plt
7 A+ r% d3 S8 l- H$ I
import numpy as np
; i* Z; c" x, z! \1 \3 F
filename = cbook.get_sample_data(jacksboro_fault_dem.npz, asfileobj=False)
. {! f# R2 g% b3 b# i" N with np.load(filename) as dem:
# ]) _! @* X. b P' S) Q2 O4 t
z = dem[elevation]
( N& |) n5 y7 R1 [( t! [ nrows, ncols = z.shape
4 Y# N6 Y8 s/ I( |8 h$ v, d
x = np.linspace(dem[xmin], dem[xmax], ncols)
' Q4 e/ Q, V G7 w1 s y = np.linspace(dem[ymin], dem[ymax], nrows)
" b! P( J( A& q8 R% O+ K x, y = np.meshgrid(x, y)
% @' x) U# a; {3 U/ N: K
region = np.s_[5:50, 5:50]
$ g( f$ q0 j; G3 C2 Q$ D x, y, z = x[region], y[region], z[region]
# j4 S) y7 G/ C( }3 V fig, ax = plt.subplots(subplot_kw=dict(projection=3d))
$ {4 @* C- l/ ]4 y ls = LightSource(270, 45)
$ c l$ ]8 H6 |0 W% \ rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode=soft)
+ c* b7 d( Z t surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb,
' T+ `9 y* i0 G1 `& e% @6 c0 q# y% u linewidth=0, antialiased=False, shade=False)
" p3 c/ r, ^0 i$ g# w- G. V
plt.savefig(example4.png,dpi=600, bbox_inches=tight)
1 C% t+ `- m8 `4 V
plt.show()
8 Z6 I+ o+ h( P8 e8 A$ C: o; W
3 a8 K4 q* e! R7 L4 d
Example 5:三维地形,包含投影(Python)
' P0 F1 T, r8 o/ S 7 Y8 M+ `$ u% x6 M+ K0 t: f3 k* \
Example 6:切片,多维数据同时展现(Python)
) G7 Q3 U$ Y2 j7 H
, W8 i+ f, D2 W6 ?9 |4 M Example 7:SSH GIF 动图展现(Matlab)
* ~4 _" {! k. W0 B& G( H! T$ w
5 s; X& D. m7 ~; `" ? Example 8:Glider GIF 动图展现(Python)
1 h" g* X+ K. h8 {
3 n, ^( `! k; P- t7 w; P# A4 `
Example 9:涡度追踪 GIF 动图展现
% S7 x, x6 [5 C
3 u2 a. h/ @4 F' s) d% S1 E1 w