GMT和Pygmt提供了一个远程数据功能,可以使用函数datasets远程下载多种在线数据,并进行处理和绘图。这里以pygmt为例绘制海底地壳年龄、陆地地形。 地壳数据[1]包含了不同的分辨率,对应不同文件大小,最粗为1d,全球数据仅125K,最大分辨率1m,全球数据188M。绘图9 E/ [6 r& n) a
[C] 纯文本查看 复制代码 import pygmt
grid_globe = pygmt.datasets.load_earth_age(resolution='06m', region="-180/180/-90/90", registration=None)
fig = pygmt.Figure()
fig.grdimage(grid=grid_globe, projection="R15c", region="0/360/-89/89", frame=True,cmap="crustal_age.cpt")
fig.colorbar(frame=["af", "x+lage", "y+lMyr"],cmap="crustal_age.cpt")
fig.show()
# C( ]/ `! R' Z g$ q. `, R: K' j5 s3 g& C8 R' i q
6 {+ v8 g! m) N1 p9 ?上面的调色板crustal_age可以在.gmt/cache/下找到,而远程数据也下载到了./gmt/server/下面。1 W+ f' H; A5 ~- c
地形数据地形数据[2]包含多种不同分辨率,对应不同的文件大小,最粗为1d,文件大小128k,最高分辨率为1s,文件大小达41G: SRTM绘图[C] 纯文本查看 复制代码 # 雅鲁藏布江大峡谷[/b]grid = pygmt.datasets.load_earth_relief(
"03s",
region=[94, 95.5, 29, 30],
registration="gridline",
use_srtm=True,
)
# calculate the reflection of a light source projecting from west to east
# (azimuth of 270 degrees) and at a latitude of 30 degrees from the horizon
dgrid = pygmt.grdgradient(grid=grid, radiance=[270, 30])
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="M15c", region=[94, 95.5, 29, 30], frame=['WSrt+t"Original Data Elevation Model"',"xa", "ya"],cmap="dem1")
fig.colorbar(position="JML+o1.8c/0c+w10c/0.9c",frame=["af", "y+lmeter"])
fig.coast(rivers="a/1p",borders="2/5,red")
# Shift plot origin of the second map by 12.5 cm in x direction
fig.shift_origin(xshift="20c")
pygmt.makecpt(cmap="gray", series=[-1.5, 0.3, 0.01])
fig.grdimage(
grid=dgrid,
projection="M15c",
frame=['lSEt+t"Hillshade Map"', "xa0.1", "ya0.1"],
cmap=True,
)
fig.coast(rivers="a/1p",borders="2/5,red")
# Shift plot origin of the second map by 12.5 cm in x direction
fig.shift_origin(xshift="20c")
fig.grdimage(
grid=grid,
shading=dgrid,
projection="M15c",
frame=['lSEt+t"Hillshade Map"', "xa0.1", "ya0.1"],
cmap="dem1",
)
fig.coast(rivers="a/1p",borders="2/5,red")
fig.show(width="20c")
fig.savefig("srtm.png") 9 K( Q0 P! g' x& s; p" U: z; H
' q2 N9 c) \% V* G
0 C( ~8 ?9 ^ n q4 ]% g Y& ^/ C# ^( G+ @+ G4 ~: s
3D地形图
# ^, k/ I( o. @! U; u1 E9 J. J6 `$ S[C] 纯文本查看 复制代码 fig = pygmt.Figure()
fig.grdview(
grid=grid,
region=[94.7, 95.2, 29.5, 30],
perspective=[250, 60],
frame=["xa", "ya", "WSNE"],
projection="M15c",
zsize="15c",
surftype="s",
cmap="dem1",
# Set the plane elevation to 1,000 meters and make the fill "gray"
plane="000+ggray",
)
fig.show()
+ X0 S; d0 ^ s' \- d
/ z# [* z% `9 N2 v, S* w7 E9 {/ w同样,我们还可以使用pygmt.grdview绘制三维地形图。下面是我曾经到过山脚下,但是在云中的南迦巴瓦峰。
/ G& B' n; Z a' ^' ^9 g+ Q" G0 ^; s4 h
2 r1 m5 b3 Q; Z4 [
& U# @+ x* Y! x4 k1 o: l% C附:遥感影像和地形的结合在github存在一个30Day*****的系列代码库,其中包含绘图领域的30DayMapChallenge2021,恰好已经使用GMT完成了这项工作,作者是Pygmt的核心开发者Weiji。 这里有两个遥感影像和地形结合的例子(17和18),可以作为很好的学习材料.
# X- m' |8 q9 X& M6 { T- I
( O# S) s" X, B1 g3 l# a0 J
! _4 w7 ]$ i/ p5 j4 Y% U5 C( QReferences[1] 地壳数据: https://www.generic-mapping-tools.org/remote-datasets/earth-age.html8 ?& y/ w ~2 c- i! P
[2] 地形数据: https://www.generic-mapping-tools.org/remote-datasets/earth-relief.html9 @3 a/ e4 w! g
0 p {, i/ ^8 U- j
来源:海洋遥感数据共享
* K+ {- a D0 I5 _1 u% Z
V4 h, g8 ?1 U2 h |