GMT和Pygmt提供了一个远程数据功能,可以使用函数datasets远程下载多种在线数据,并进行处理和绘图。这里以pygmt为例绘制海底地壳年龄、陆地地形。 地壳数据[1]包含了不同的分辨率,对应不同文件大小,最粗为1d,全球数据仅125K,最大分辨率1m,全球数据188M。绘图
2 N0 m& N' d" Z3 n[C] 纯文本查看 复制代码 import pygmt
grid_globe = pygmt.datasets.load_earth_age(resolution='06m', region="-180/180/-90/90", registration=None)
fig = pygmt.Figure()
fig.grdimage(grid=grid_globe, projection="R15c", region="0/360/-89/89", frame=True,cmap="crustal_age.cpt")
fig.colorbar(frame=["af", "x+lage", "y+lMyr"],cmap="crustal_age.cpt")
fig.show()
) ~5 i3 ]4 s8 t7 ^) }- g: O) t$ N- s
2 |& C: K; j. Q- T% b上面的调色板crustal_age可以在.gmt/cache/下找到,而远程数据也下载到了./gmt/server/下面。7 {, P/ W" D( J G% K- D9 p' u
地形数据地形数据[2]包含多种不同分辨率,对应不同的文件大小,最粗为1d,文件大小128k,最高分辨率为1s,文件大小达41G: SRTM绘图[C] 纯文本查看 复制代码 # 雅鲁藏布江大峡谷[/b]grid = pygmt.datasets.load_earth_relief(
"03s",
region=[94, 95.5, 29, 30],
registration="gridline",
use_srtm=True,
)
# calculate the reflection of a light source projecting from west to east
# (azimuth of 270 degrees) and at a latitude of 30 degrees from the horizon
dgrid = pygmt.grdgradient(grid=grid, radiance=[270, 30])
fig = pygmt.Figure()
fig.grdimage(grid=grid, projection="M15c", region=[94, 95.5, 29, 30], frame=['WSrt+t"Original Data Elevation Model"',"xa", "ya"],cmap="dem1")
fig.colorbar(position="JML+o1.8c/0c+w10c/0.9c",frame=["af", "y+lmeter"])
fig.coast(rivers="a/1p",borders="2/5,red")
# Shift plot origin of the second map by 12.5 cm in x direction
fig.shift_origin(xshift="20c")
pygmt.makecpt(cmap="gray", series=[-1.5, 0.3, 0.01])
fig.grdimage(
grid=dgrid,
projection="M15c",
frame=['lSEt+t"Hillshade Map"', "xa0.1", "ya0.1"],
cmap=True,
)
fig.coast(rivers="a/1p",borders="2/5,red")
# Shift plot origin of the second map by 12.5 cm in x direction
fig.shift_origin(xshift="20c")
fig.grdimage(
grid=grid,
shading=dgrid,
projection="M15c",
frame=['lSEt+t"Hillshade Map"', "xa0.1", "ya0.1"],
cmap="dem1",
)
fig.coast(rivers="a/1p",borders="2/5,red")
fig.show(width="20c")
fig.savefig("srtm.png") # K# F1 C& m1 E5 q( C
1 _& W1 N* E2 K* N
$ n* b; S7 ^2 G8 Z( E2 H
* D$ S! z+ X9 Y, q& t- `3D地形图6 U" Y; G" e3 }& I, ~5 Z. n5 s) B! k
[C] 纯文本查看 复制代码 fig = pygmt.Figure()
fig.grdview(
grid=grid,
region=[94.7, 95.2, 29.5, 30],
perspective=[250, 60],
frame=["xa", "ya", "WSNE"],
projection="M15c",
zsize="15c",
surftype="s",
cmap="dem1",
# Set the plane elevation to 1,000 meters and make the fill "gray"
plane="000+ggray",
)
fig.show()
" M7 l9 N) ?7 E g2 O$ q- M8 Y
8 E) N2 V" g9 s# z2 l6 Z: I
同样,我们还可以使用pygmt.grdview绘制三维地形图。下面是我曾经到过山脚下,但是在云中的南迦巴瓦峰。
+ d* u! p7 k6 V4 ]# u5 A& R- v) h1 B) H; b. k
! {, z6 Y/ ]4 _$ a2 d3 z% V! y" g3 A* B3 I$ A7 u
附:遥感影像和地形的结合在github存在一个30Day*****的系列代码库,其中包含绘图领域的30DayMapChallenge2021,恰好已经使用GMT完成了这项工作,作者是Pygmt的核心开发者Weiji。 这里有两个遥感影像和地形结合的例子(17和18),可以作为很好的学习材料.
, q' k( ]- n: y! a1 _' `2 B/ |
$ I0 U& V& s% \/ ~6 x( L* ]- V" K. D" |$ D8 [
References[1] 地壳数据: https://www.generic-mapping-tools.org/remote-datasets/earth-age.html3 m/ z" S/ q& B: l
[2] 地形数据: https://www.generic-mapping-tools.org/remote-datasets/earth-relief.html1 w$ g+ D! n4 W$ P$ b+ l3 X
, ?' d+ h2 [7 q0 X7 f) t来源:海洋遥感数据共享. D- ?( |% f5 H1 s0 P
" J- y7 b. U. j; }
|