6 U- M" D& t1 ^2 K
作者 | 德新
0 K9 q/ l$ [/ ^: _: A7 W2 s/ a3 i
编辑 | 王博
. ~* F5 M# @/ K, b, U% | 3 Z7 I( Z B) v" L- J: R9 a, t& t
1024,是程序员的节日。
0 K4 ^. {( D* U6 H5 b0 ^) J 但在汽车行业,因为小鹏,这几年1024已经逐渐变成汽车科技的秀场。
; _7 y! G7 I5 u3 k 小鹏的1024科技日始于2019年。
( s# p4 Y' y( d& q+ l3 d
2020年,智能驾驶XPILOT和智能座舱XmartOS成为小鹏最重要的两个技术标签。
1 n8 j0 n& U" y7 n: v' h4 E4 f 2021年,高速NGP横空出世仍让人记忆犹新。高速NGP流畅、本土化的体验,一下就刷新了大家对辅助驾驶技术的认知,也很大程度加速了这个行业的(发展)内卷。
8 \- L z" d0 s3 T9 J
现在的1024,既是观察小鹏科技储备的绝佳窗口,也是衡量国内汽车科技发展水平的一个风向标。
7 O; q" `2 r: S' Y& F8 Z
作为一家以「智能科技」为核心卖点的车企,小鹏在2022年的布局已经大幅超出了汽车本身。小鹏所展示的黑科技,既有大家熟悉的智能驾驶、智能座舱,也有更面向未来的智能机器人甚至飞行汽车。
& H( F1 g3 s4 _! g3 M
作为一家头部的新势力,硬科技车企的代表,小鹏对未来出行是怎么思考的?
1 ^# l0 G4 ^: N( Q# q* l% K 1.城市NGP首发,比高速NGP难100倍
; I: f9 Q. p3 P4 \ 首先聊聊备受期待的城市NGP。
; p& y4 ?! q5 |* S 高速NGP - 城市NGP - 全场景辅助驾驶(XNGP)- 全自动驾驶,这是小鹏看到的智能驾驶的演进路径。
2 T$ K, [3 p" m# L: q+ T+ k: I" j! P 用小鹏自动驾驶副总裁吴新宙的话说,「单场景辅助驾驶是上半场,全场景辅助驾驶是下半场。」
* [# ^; K' J, t) z3 _, j8 t- S
- |9 ?* a- x% C; w2 `# y6 m1 ]
城市NGP是开启下半场竞争的前奏,我认为也是辅助驾驶发展的一个拐点。
7 q" c8 o5 T! Q* V/ b
此前,XEV研究所做了不少车主调研,很多新能源车主之所以不用辅助驾驶,是因为缺乏高速路的使用场景,而城区路又用不了。小鹏给了更精细的数据:用户的用车时长中,90%是在城市道路;从频率上看,用户100%每天都会经过城市道路,但只有25%的用户会经过高速路。
$ `% {2 W6 m) V( F: R! C 城市NGP比高速NGP要难上百倍。小鹏的实操经验是:相比高速NGP,城市NGP的代码量提升至6倍,感知模型数量提升至4 倍,预测/规划/控制相关的代码量是88倍...
, q$ T' I& T6 d: { l& b r 所以在这个过程中,也有人劝小鹏的自动驾驶团队,为什么要去做这么难的城市场景,而不是做一些难度更低、收益更快的场景?吴新宙表达的是,「这是难且正确的事」。
8 w7 B3 f# L# u* [! T! I" }0 X, F7 \ 城市场景作为最高频刚需的场景,会很大程度提升用户对辅助驾驶功能的感知,拉动用户对辅助驾驶软件的付费意愿,同时拉大小鹏作为领先企业和其他车企的差距。
1 J: i5 B% O3 T, h
像很多新技术一样,从不好用到好用,到产生依赖,存在一个临界点,辅助驾驶也是如此。
6 y& R0 u) } t8 Z8 J6 Q+ Z
何小鹏在初体验城市NGP早期版本时,觉得系统就是一个新手司机,随时要准备接管;但到10月份体验第4个版本时,已经觉得是一个开车水平强一些的司机。他认为随着技术打磨,用户从不信任到依赖的这个转折点快要到了。
1 |- R3 c* r9 F6 G- E: r8 _ 从技术层面上,城市NGP主要解决了两方面的问题:
2 T- h; ~& i) N" z, [* h* k
# r+ l9 R6 _; P# B: G 第一,应对由城市场景本身的复杂特征带来的挑战,比如车辆、行人密集且会出现大量相互遮挡,并且目标的运动轨迹更加不规则和多元,静态的道路环境也在持续发生变化。
. p' o: O+ e. i
6 s- x% E' b: `5 v 具体而言,小鹏从视觉感知、传感器融合、行为预测、规划控制等方向上做了大量的工作。
, h- F5 B, i4 }1 x; F8 f
比如针对密集场景的物体检测,放弃了原NGP的物体检测神经网络架构,重新搭了一套架构;启用业界最新的单目3D检测网络,直接通过单目RGB相机来预测物体大小、朝向、距离和速度;设计新的车辆转向灯识别网络;利用数据闭环,解决各种长尾下的红绿灯识别问题,等等。
`$ T1 f# R; o4 h6 H( Z
( a/ c0 w" I2 Z, K* ?7 Q( ? 第二,要在有限的资源上,将功能产品化兑现给用户。P5上只有30 Tops算力的Xavier计算平台,相比后来的OrinX资源非常有限,这要求有强大的工程化能力,包括模型优化和部署等等。
+ _2 A' r" Q" \5 W+ E' E3 T) x$ X$ W! F! A% m; J" n! J: P, p
目前业界在一块Xavier上实现城市NGP并交付的车企,只有小鹏一家。据说这个事情,曾有友商多次跟小鹏内部求证,是只用了一块,而不是两块或者更多。这也侧面反映了工程化难度之大。
8 Q* T: ^# M* e! v8 Z& d, W
目前,城市NGP已经在P5上开始全量推送,因为高精地图的原因,广州是可以开启城市NGP的首发站,接下来将是深圳和上海。
8 i7 I5 E Q6 l4 b1 b 在已推送城市NGP的用户车辆上, 城市NGP里程渗透率达到约63%,城市NGP下的通行效率接近人类驾驶员的90%,每百公里接管次数0.6次。
( n& p7 V; B* _: b/ F
城市NGP百公里0.6次接管什么概念呢?假设你每天通勤60公里,5天300公里,那在一周的工作日内,你的周平均行驶接管次数不超过2次。据我所知,这个数据甚至好于一些Robotaxi公司在测试区的接管数据。
. f% _1 o% r% O4 h# H0 |4 j% t
2.XNGP,全场景能力是辅助驾驶竞争的下半场
6 [; _- j: T0 R" G" R# r _6 j 城市NGP首发量产,是小鹏自动驾驶技术体系的冰山一角。
- L! @# F% d- S " \& F+ B1 \7 i) f2 D) }
2023 - 2025年,小鹏这个阶段的主要目标是攻克全场景辅助驾驶。
3 I9 g) E, l' `( S# n0 ]0 D2 z+ E 全场景辅助驾驶的精髓,我认为是用一个很强的视觉感知底子作为主干,减少对高精地图的依赖,从而做到「有图体验完美,没图体验也能一流」。
; n: k5 o8 M4 o& n( [
为什么强调减少对高精地图的依赖,因为高精地图的许可和更新都很难。
4 Z& z- P, k9 @: ]& X6 \/ U3 a
包括城市NGP在内,国内头部车企/自动驾驶公司的城市NOA落地,目前多少都受到高精地图审批的影响。何小鹏说,原以为城市NGP在明年第一季度可以大范围铺开,实际上只规划了几个城市。
8 `3 ^5 L& f" z
为了摆脱对高精地图的依赖(或者在没有图的情况下依然能做到完美表现),小鹏开发了新的感知模型架构XNet,XNet以多相机、多帧的图像作为输入,输出的是动态和静态目标的感知结果。
, m4 r9 l. k1 P4 e! K# `1 ~ 静态目标的集合,相当于是实时的高精度地图;
" _. S( [; }: ]& R" C0 Q2 l
针对动态目标,因为网络具有360°的视角,系统的博弈能力会更强,变道成功率也会更高。
+ B1 l4 d% s/ C r- H
( B: X4 M. b! v( C, Q8 j: [% h 这样一个大模型,需要大数据投喂,也需要大算力来训练和部署。
O/ y8 Y! G$ m& @4 ]0 A" ?
根据小鹏测算,XNet训练数据的数据标注工作,大概需要50 - 100万段的短视频,手动标注需要2000个人年(1000人团队2年时间)来完成;用单个服务器来训练需要276天;模型训练完,直接部署到车端的话,一个Orin-X还不够,需要1.22个Orin-X。
& ` U( }! @! ~2 [% X9 g5 [- }
为此,小鹏对应开发了全自动标注系统,将2000人年压缩到了16.7天,小鹏今年新建的自动驾驶智算中心「扶摇」运用在训练上,可以把模型训练的时间压缩602倍;再通过对Transformer算子的重构,XNet的模型部署最后占用了Orin-X 9%的算力就完成了。
L6 a, T3 e2 q L" h 这段太绕了是吧?简单来说,就是场景很难,算法复杂,极耗资源。怎样用更少的资源在短时间内做出好的效果,考验工程能力。XNet就恰好反映了小鹏在自动驾驶上全面系统的工程能力。
: Y5 O' a7 f% d* W1 O 其实到了2022年,从单点功能上,比如5家车企的LCC,已经较难区分出很大的差别。辅助驾驶的能力PK,更多考验的是对困难复杂场景,甚至罕见场景的应对能力,而这部分能力的增长需要强大的数据闭环。
0 c# |/ Z4 ^% L, q: d2 D9 Y 数据闭环有4个关键环节,采集 - 标注 - 训练 - 部署,后3个环节在上面都有提到。
% K% c) g0 ^% n' M
采集环节,小鹏目前有超过10万辆带XPILOT系统的车型。吴新宙透露,小鹏已经开发了超过300个触发器,每周可以根据特定的场景需求进行专门的数据采集。
# [& R& h& H' S, u 城区辅助驾驶开发的精髓是通过神经网络来构建复杂的代码,因为人工编写在海量的复杂场景面前,很快会到达瓶颈。因此核心的竞争是数据闭环的能力和效率。
' q6 m. s$ `% [- |& ~9 P7 t 在这点上,小鹏无论从钱(建立智算中心)、人(团队规模)、车队(量产车数量),应该都是国内目前走得最快,步子迈得最大的公司。辅助驾驶的上半场靠精英人才投入和工程积累,下半场在上半场基础上,拼的更多的是系统能力和效率。
% W% A# d: n @; n# Y; B) N6 s5 P; W 哦,对了。
9 y2 |3 S! ]5 J) o 还有One more thing,小鹏计划在明年和后年开始,从广州起步来部署Robotaxi,大概率会基于G9开始投放,希望以Robotaxi和辅助驾驶两条线,形成功能和数据的互补。
, j4 f2 t$ M- d) U- x: U" I! f8 B
3.自研语音基础能力,再次刷新座舱交互的想象力
# a i, L4 p" b( F, j 辅助驾驶和智能座舱,是小鹏智能化标签的左膀右臂。
# G- A; o) d0 D3 [, `
前两年P7的座舱,已经刷新了行业的座舱语音交互标准。就算到今年,小鹏在P7上提出的全场景语音交互、连续对话、可见即可说的能力,还是行业内其他车企旗舰车型追求的功能标准。
& e: d2 w$ |% e( O: n P7的语音能力,定义了语音作为智能汽车交互入口的范本。从这点上来说,我个人认为它的独特性,甚至大于同时期XPILOT在智驾领域的突破。
, K* E+ Q- X Q. f3 \
3 f: D2 Z7 ? V6 p
今年,小鹏推出了全场景语音2.0体系。简单来说,就是多人在车内对话的状态,越来越接近正常对话的状态,而不需要人来迁就机器。
0 K' n& M" _- L. S, k' ]# N2 F) u
比如全时在线功能,不需要唤醒;一句话最多支持4条指令的同时执行;MINO多音区功能,相当于语音助手有多个分身,车内多人各说各的,同时反馈和执行。从响应、执行速度上,2.0版本也有不少指标刷新了行业最快成绩。
; C8 { K7 l) h" g/ y* [
座舱语音交互能力还能持续压榨,背后除了8155带来的水涨船高之外,小鹏已经开始深入语音技术的底层,包括:声学信号处理、本地语音识别、在线语音识别等等。这些典型语音基础能力 ,这是一般车企不会涉足的领域。
# c6 [% x2 R6 \9 b 小鹏的第二代语音架构全栈自研,再度说明,小鹏对语音的探索,已经进入到非常前沿的地带。第三方供应商在技术方案和迭代速度上,难以满足需求。小鹏内部认为,自研方案的先进性更高,资源使用和数据成本都更低,也有助于拉开差距,形成独特的产品竞争力。
$ {; P) ?; U. r6 b! z8 p+ S% K+ T 另外,小鹏的海外车型,也会采用自研的语音架构。
# _( o1 V o, E0 U. Y) a+ P8 } 4.智能机器人离家用更近一步,飞行汽车试验车成功首飞
4 s4 ]) i+ [1 } 与特斯拉类似,小鹏也在通过小鹏鹏行造机器人,甚至小鹏启动的时间点更早,6年前就开始了。
* Q: j. e8 z0 Y4 c
这届1024上,第二代智能机器人亮相:
4 ?( t" o# I: u4 T* Z% Q) B$ q) `! l I6 C% K& d
头部集成了AR投影,是对机器人交互形式的探索;
: w! u' }! E3 [$ h8 C" b* w2 H# q 足底使用“EVA超临界发泡”及耐磨橡胶,缓震、静音与耐磨性能提升;
# b" o2 C" u+ Z- u3 A 颈部等区域使用新型弹性织物与液态硅胶材料,解决多自由度运动的设计问题,且耐冲击、耐刮擦;
+ E5 \' R$ ~4 X
尾部增加了机械臂,可执行更多的功能;
6 ?- ?6 R3 U6 ?, W2 `' t; w 算力平台,采用与高端智能汽车同级别的平台;
( X! |& U9 ?1 ?4 ~3 F- H 电池系统,采用车规级电池系统,BMS和电池Pack 一体化设计,更加紧凑、安全;
8 Z! t$ w% z" b& M3 X+ z) j' e; N# o 热管理系统智能化,大幅提升智能机器人极限性能。
- N' E/ u7 x+ c+ v1 ? f
+ Q5 h8 b& Z. b! F3 e
据何小鹏介绍,目前围绕智能机器人的开发,核心是在打磨几方面的能力:行动的静谧性;在狭窄环境下的避障能力;以及机械臂的多场景应用。
2 d8 ^7 |' O; j# x. X9 G2 C 最后,继10月份完成迪拜海外首飞之后,小鹏汇天的飞行汽车也在这届1024活动上进行了亮相,内部研发代号为X3。
& ^$ Z- k" Y% {0 O, f. _
在去年发布的飞行汽车概念的基础上,X3改变了构型,具备机臂折叠收纳系统,可进行陆行和飞行模式的切换。
7 Q: y% K* G" ~ 在机臂折叠收纳状态,它的尺寸和常规汽车相当,能够在开放道路自由行驶;在法规、环境允许的条件下,垂直起降,飞行跨越拥堵、障碍、河流等,满足人们短距离低空出行的需求。
$ K6 f6 S+ z" @) w: _% Y
( q; R& W' b/ m$ I l0 A X3的试验车整备质量接近2吨。目前基于X3,汇天的飞行汽车已完成试验样车首飞。汇天的目标是在X3的基础上实现量产。小鹏之前已经宣布,希望在2024年推出量产飞行汽车,成本不高于100万元。
+ T, l& q, Q' f4 S 在X3上,汇天完成飞行汽车量产的两大挑战:
4 B' a3 O6 c" Z/ B6 F) C+ b1 B
第一是飞行控制。在螺旋桨直径接近 4 米的情况下, 对转动惯量的控制和响应速度要求很高;
. o5 f- {: o% |) w e& h: y8 o. G
其次,动力系统要让2吨级的车辆起飞,所需动力是地面行驶的15倍。电池放电功率密度、能量密度要远超目前汽车行业平均水平,还需要更好的热管理系统,并考虑动力冗余需求。
2 B* o+ f' F, ~9 v; Z: D9 _% v
何小鹏也很坦诚,X3的电池目前可以支撑车辆行驶几百公里,但飞行的话,只能支撑几十公里。
3 c( m, G0 ^9 N- i
总结:
' n6 ]0 I/ a1 l" [& e 我在小鹏广州总部的现场看完了这场1024,这场活动一点不像车企的技术日,倒非常像GoogleX的科技展示。
h5 p4 `# v0 Z! F& ?7 m* ?
整个发布会前半场非常硬核,后半场很fancy。很多时候,大家的注意力容易被后半部分那些炫目的概念吸引,甚至网上有声音质疑小鹏布局太多,智能机器人和飞行汽车的商业化路径不清晰。
Y5 J0 e& D$ }+ a! Z$ y
但从整个时长分配来说,小鹏是非常务实的。75分钟的发布会,智驾部分占了50分钟。当下与未来,诗和远方,边界非常清晰。
0 j! a+ |, a0 J: k3 Y6 T 无论是城市NGP,还是飞行汽车,小鹏在前沿科技上的探索,有很大一部分已经进入到前人未至的无人区。这意味着,市场上没有同类竞品,无从对标,也没有供应商具有成熟经验,其中有大量全新的定义和自研工作,极度考验一家车企对未来的判断、执行力和交付能力。
6 q% r$ k- r' X( K! Y: _+ m; @ 小鹏过去8年在硬核技术上的积累,已经构建起一个完善的科技体系,在不同的产品上,人工智能、人机交互、动力系统等领域有相当一部分可以复用,甚至可以通过产品之间的反哺,形成独特的领先性。
1 p! G/ l# s$ J+ l. Z' D/ e* }
印象最深刻的是,何小鹏和吴新宙,都提到了做「难且正确的事」,打造「让用户骄傲的科技产品」。
, L A# t# J& e# B W- j" b- q
辅助驾驶、智能座舱、智能机器人和飞行汽车,是否足够令人兴奋、让人骄傲?现场的车主们已经回应了一个狂热的「YES」。
4 u6 f) N, @* s, e) \$ Y8 q9 U