6 H! J8 S1 V2 r9 _; ]& f 在我们科研、工作中,将数据完美展现出来尤为重要。
# H1 }0 b' u' n7 z# X: U
数据可视化是以数据为视角,探索世界。我们真正想要的是 — 数据视觉,以数据为工具,以可视化为手段,目的是描述真实,探索世界。
) A7 D: d) g t5 q
下面介绍一些数据可视化的作品(包含部分代码),主要是地学领域,可迁移至其他学科。
' v5 o: n# L! \0 b0 A K Example 1 :散点图、密度图(Python)
- _3 c5 \) `8 d$ `4 `( i1 m
import numpy as np
+ _) X+ a3 D9 d
import matplotlib.pyplot as plt
# y2 {2 ]$ v" O* n+ }8 l0 | # 创建随机数
9 V; y6 U& c6 p4 `6 @3 y- {: _
n = 100000
1 j; y- [ q* c" u0 E
x = np.random.randn(n)
$ E: R9 c$ h: E! m" X y = (1.5 * x) + np.random.randn(n)
8 c: ]: t. K) Z; C4 W, k+ i
fig1 = plt.figure()
+ \* u' J+ @- l q6 Z# B plt.plot(x,y,.r)
. Q4 C/ u/ c2 N, J plt.xlabel(x)
2 {7 M9 k6 ]0 M plt.ylabel(y)
: I* Y7 t) C" v6 S) s8 k' J$ W) k plt.savefig(2D_1V1.png,dpi=600)
0 T* V6 N. c% b- o2 j
nbins = 200
9 W2 _$ A+ x* w
H, xedges, yedges = np.histogram2d(x,y,bins=nbins)
2 Y& P! l2 @, g* r # H needs to be rotated and flipped
$ i2 Y7 U5 h/ v H = np.rot90(H)
8 I6 ^7 E U. n* c4 U' I H = np.flipud(H)
) s& G" f3 h: B: ^3 g+ d8 { # 将zeros mask
7 |8 D I2 G3 Z7 x' c1 a
Hmasked = np.ma.masked_where(H==0,H)
6 f+ A: I7 E# @" _0 X4 y # Plot 2D histogram using pcolor
% }0 s' Q7 g3 S fig2 = plt.figure()
l- {4 P1 ]8 U) q+ c
plt.pcolormesh(xedges,yedges,Hmasked)
& M8 U! N: `3 A9 d' f x# k
plt.xlabel(x)
; z; D& d2 T6 j! X; X plt.ylabel(y)
j2 Z: p6 w& }9 [' d
cbar = plt.colorbar()
. Q) F3 d( ^2 S/ H& o+ l0 [
cbar.ax.set_ylabel(Counts)
" t' ^) z- q9 M3 v5 c& l1 b plt.savefig(2D_2V1.png,dpi=600)
5 `1 K- i9 N, R7 W2 ? plt.show()
7 O! {7 S8 C0 K+ {6 j6 w+ T1 R* i ) n9 t3 S w/ Q1 W ]
( o7 T: G# G( J1 h4 N K
打开凤凰新闻,查看更多高清图片
* A" l7 O, [3 A7 w. H
/ O) }- s' m) m
6 V. u& r: S1 ]# V5 d% K* P ; b; T1 W7 s; m6 r: r- Q4 R3 `
Example 2 :双Y轴(Python)
9 \0 s! ~. B0 B# P3 s: R import csv
! U8 `4 M5 ~0 a+ N I1 x import pandas as pd
3 `& X9 i, v* D [! v9 u+ r, e
import matplotlib.pyplot as plt
- w# ?/ K6 C* n5 {! g7 ^
from datetime import datetime
/ o( c/ q* I6 A5 i data=pd.read_csv(LOBO0010-2020112014010.tsv,sep=)
7 {9 A( F. r$ M8 \* D& e; f
time=data[date [AST]]
: M' k) W9 w. m3 F& {& q( } sal=data[salinity]
3 e8 {! e x' p( K! L tem=data[temperature [C]]
7 U* |, N& }$ n' b print(sal)
% u0 M; Z! Z9 }1 j+ O3 G
DAT = []
. E' O' U" F( O
for row in time:
) d9 B# L% |$ ^: a" N# E DAT.append(datetime.strptime(row,"%Y-%m-%d %H:%M:%S"))
" M; \" {5 y5 w. ?9 V
#create figure
. D! x- e h8 f Z2 e7 C* d: E fig, ax =plt.subplots(1)
0 N0 r: a& @5 g" R' E }" Y+ {
# Plot y1 vs x in blue on the left vertical axis.
3 H# |: w# {% d, ~6 g
plt.xlabel("Date [AST]")
7 e% M3 m: y; V( L0 H) |) B
plt.ylabel("Temperature [C]", color="b")
5 L( ?# F( |( M8 B
plt.tick_params(axis="y", labelcolor="b")
- C" z/ I1 b: [, R0 m- Z plt.plot(DAT, tem, "b-", linewidth=1)
4 X* l# D& M0 A% } plt.title("Temperature and Salinity from LOBO (Halifax, Canada)")
: z, v0 X, E3 Y- m% K9 {' J fig.autofmt_xdate(rotation=50)
1 B/ \; ~4 ^5 m' S) A7 Q # Plot y2 vs x in red on the right vertical axis.
9 u& X7 m) Y: g$ ]/ V# @5 q
plt.twinx()
# M! |# T; Z3 {' [ plt.ylabel("Salinity", color="r")
9 X* p( C! v/ }7 @( Q) e
plt.tick_params(axis="y", labelcolor="r")
5 x7 a: S( D8 L$ O7 w, E9 B, ~ plt.plot(DAT, sal, "r-", linewidth=1)
3 Q$ i' g+ `6 ]+ u( A3 g: y6 O9 y4 ? #To save your graph
7 F X2 w+ d* V3 \- A c9 A; _
plt.savefig(saltandtemp_V1.png ,bbox_inches=tight)
& y X' Z1 H J1 t" @! o5 y* i
plt.show()
7 h0 n. d o) g . ?4 y, L+ k5 w% o/ f4 | a9 f% p8 m
Example 3:拟合曲线(Python)
6 z6 f3 a% c7 j# Q import csv
3 [0 K# P, O7 A! _0 ]9 s. x import numpy as np
! s5 W; y G& Z2 A) h import pandas as pd
6 m& b" ?8 N" o6 M6 O
from datetime import datetime
* {2 Q: U5 P. ~4 l$ g7 @
import matplotlib.pyplot as plt
. k! C, H/ c* f* f4 Y
import scipy.signal as signal
+ F# d! D2 a5 i2 v) Y data=pd.read_csv(LOBO0010-20201122130720.tsv,sep=)
9 L9 ~7 K ]+ [7 i" B7 G, |; W/ M3 b time=data[date [AST]]
7 a3 t: D, ]9 M temp=data[temperature [C]]
- e7 h$ s" ?+ h7 n* }
datestart = datetime.strptime(time[1],"%Y-%m-%d %H:%M:%S")
$ }1 k1 d( D: _
DATE,decday = [],[]
9 v o" Y# l% I* P! V
for row in time:
1 ?) Y/ D' N1 l" L) D2 {
daterow = datetime.strptime(row,"%Y-%m-%d %H:%M:%S")
/ v* Y# K% N" D0 w( j DATE.append(daterow)
' J7 I1 R/ [, g
decday.append((daterow-datestart).total_seconds()/(3600*24))
/ g0 B4 M& X& K- T2 a8 n; }) s) J
# First, design the Buterworth filter
5 L5 ?& H$ T9 X N = 2 # Filter order
1 E2 p% C8 m4 {" |( v0 n! I9 @- _
Wn = 0.01 # Cutoff frequency
w5 \/ R3 ^9 L! ? B, A = signal.butter(N, Wn, output=ba)
% S' {) N# J. G$ Z
# Second, apply the filter
9 D3 d) r- x6 e, y7 S tempf = signal.filtfilt(B,A, temp)
7 B1 @. i! L6 n$ q: X
# Make plots
. h3 B* e( ]# j+ q fig = plt.figure()
( N6 g4 ]5 X7 Q$ O4 |) d
ax1 = fig.add_subplot(211)
0 R: x; v8 ]: H$ S' [+ d3 c plt.plot(decday,temp, b-)
" W+ q# c2 x8 P. S; _( h plt.plot(decday,tempf, r-,linewidth=2)
& F0 o- k6 w# c5 V! U2 k plt.ylabel("Temperature (oC)")
: m# \) r" Y" G( J1 h6 n' ` plt.legend([Original,Filtered])
! f; \* j1 @. ~/ H7 ?3 d* P h plt.title("Temperature from LOBO (Halifax, Canada)")
^2 h' l- c5 Q' t8 l- v! ~ ax1.axes.get_xaxis().set_visible(False)
$ t' g' R# F3 n) P0 |" J# u
ax1 = fig.add_subplot(212)
; D2 ^' m( V/ h; w7 g
plt.plot(decday,temp-tempf, b-)
3 Y' R: `$ C6 C% o* \# W0 H plt.ylabel("Temperature (oC)")
& `9 g |) @4 `" I4 b& L1 e6 M plt.xlabel("Date")
8 P T" ]# ~/ a; _( A( H
plt.legend([Residuals])
8 `; [- D" o0 V0 _9 D
plt.savefig(tem_signal_filtering_plot.png, bbox_inches=tight)
: P, x. N. g- w1 s plt.show()
7 u1 Q/ c. ?" o4 z; o5 m% R+ Q+ ^
7 b6 `( r- {: f1 s8 h u+ L Example 4:三维地形(Python)
0 l+ d w# @- b2 X1 o, ^( e0 w9 A9 x
# This import registers the 3D projection
/ o8 w/ g3 I7 n5 `; b3 E$ X3 K
from mpl_toolkits.mplot3d import Axes3D
5 D( @6 f. v S' C from matplotlib import cbook
: D" r7 q: e2 v @; r- b' r6 ]4 i from matplotlib import cm
& N+ {4 |- K4 {) U1 W0 W: V from matplotlib.colors import LightSource
$ I; A4 H8 o2 r
import matplotlib.pyplot as plt
6 S: F. V; a: @4 l: @: n, ]. ~# c
import numpy as np
& q& p4 n1 z& c
filename = cbook.get_sample_data(jacksboro_fault_dem.npz, asfileobj=False)
6 n' U e4 `" K with np.load(filename) as dem:
% M" D% W" \, w$ p% L z = dem[elevation]
# m* d8 n4 N# p- H/ b
nrows, ncols = z.shape
) O. X. E, t6 c& d7 E8 W
x = np.linspace(dem[xmin], dem[xmax], ncols)
& h! x& _7 H" J) x B2 R. M
y = np.linspace(dem[ymin], dem[ymax], nrows)
6 Z! W3 \; o. H# {# S& q x, y = np.meshgrid(x, y)
) |8 R' m5 i+ E8 A- v3 b3 J
region = np.s_[5:50, 5:50]
0 W! [7 @8 g- e; b# n2 I x, y, z = x[region], y[region], z[region]
8 P. U/ i8 D# s fig, ax = plt.subplots(subplot_kw=dict(projection=3d))
8 K: i' |3 {0 S" F8 W' p ls = LightSource(270, 45)
4 z) h& e1 ?- a rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode=soft)
! c, U8 o( a, D) p% i' N7 I
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb,
8 n" H( Z1 M" W* s linewidth=0, antialiased=False, shade=False)
" P+ L. m# k. e0 o8 W! j
plt.savefig(example4.png,dpi=600, bbox_inches=tight)
6 s7 D, T# o' L C! ?# V7 Q
plt.show()
* R7 I% X( ~ L2 P9 l) U$ K6 ~
; P2 x4 Z4 i/ c0 o9 S
Example 5:三维地形,包含投影(Python)
" y' h Y3 N) d9 B 3 _4 {* G1 S$ B
Example 6:切片,多维数据同时展现(Python)
' v) a/ \& a R c
$ h' c" ?% Q* G: F# _& b+ d8 l Example 7:SSH GIF 动图展现(Matlab)
! ]3 y7 E1 j, F2 n5 K: U6 V- c
. P2 s" @* A. e' F, M
Example 8:Glider GIF 动图展现(Python)
) {! c7 a& A+ U( G6 }
p3 U# Y* ]- |$ ]3 I1 s) j- ] Example 9:涡度追踪 GIF 动图展现
% L: j0 D, Z8 ~* L0 E) K' t
0 I) i* m3 t& K: i7 V$ [6 M R